• Title/Summary/Keyword: 수평면일사계

Search Result 3, Processing Time 0.018 seconds

Solar Radiation Measurement and Data Quality Management (태양자원 측정 및 데이터 품질관리)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.63.2-63.2
    • /
    • 2010
  • Solar radiation data are used in several forms and for a variety of purposes. The most detailed information we have is beam and diffuse solar radiation on a horizontal surface, by hours, which is useful in simulations of solar processes. Daily data are more often available and monthly total solar radiation on horizontal surface can be used in some process design methods. However, as performance is generally not linear with solar radiation, the use of average may lead to serious errors if non-linearities ara not taken into account. It is also possible to reduce radiation data to more manageable forms by statistical methods. The control of the quality of most measurements is relegated to the control of the measuring instruments and measuring processes themselves. An accurate measurement will usually result from the use of a high-quality instrument that has been accurately calibrated and is properly used by a qualified individual.

  • PDF

A Study on the Calibration Techniques for Thermopile Pyranometer (일사계 교정기법에 관한 연구)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

Thermopile Radiometer Calibration Using Reference Instrument (표준준기에 의한 일사계 교정)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • The main purpose of the calibration procedure is to perform a one to one comparison of the reference pyranometer and the test pyranometer. In order to achieve this, both pyranometers need to be exposed to exactly the same irradiance, under the same circumstances. There are a number of error sources that could result in a wrong measurement. Most importantly Lamp instability, pyranometer offsets, thermal offsets of junctions, voltmeter offset, voltmeter instability, reference pyranometer instability, tilting of the pyranometers and differences in sensor height. Another sun-disc calibration procedure compares the computed vertical component of the direct irradiance as measured by a pyranometer with that measured by the pyranometer to be calibrated. Readings are taken with the levelled pyranometer on a clear day. Firstly the global irradiance and then the diffuse component are measured. Simultaneously measurement of direct irradiance is made with the pyrheliometer. The ways of performing the calibration and the subsequent calculation have been chosen such that the effect all these error sources has been eliminated as much as possible.

  • PDF