• Title/Summary/Keyword: 수치지도제작

Search Result 357, Processing Time 0.02 seconds

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

Generation of Digital Orthoimage using Direct Georeferencing (외부표정요소 직접결정에 의한 수치정사영상 생성)

  • 박운용;박홍기;위광재;송연경
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.245-249
    • /
    • 2004
  • 최근에는 항측기에 GPS/INS 장비를 탑재하여 사진의 촬영과 동시에 외부표정요소를 직접 결정할 수 있는 Direct Georeferencing 기술의 개발로 인하여 지상기준점측량과 AT과정이 불필요하게 되었다. Direct Georeferencing 기법을 이용하게 되면 외부표정요소를 구하기 위한 전처리 과정을 생략할 수 있다. 따라서 지상기준점을 이용한 사진기 준점측량(AT)을 수행하지 않더라도 수치표고모델만 미리 확보되어 있으면 촬영과 동시에 수치정사사진을 생성할 수 있다. 본 연구에서는 촬영과 동시에 GPS/INS에 의해 획득한 외부표정요소와 항공사진을 이용하여 영상매칭에 의하여 수치표고모델(DEM)을 자동 생성하고, 이 결과를 바탕으로 정사사진을 제작하였다. 실제 도화데이터와 Direct Georeferencing 정사영상과의 오차를 평가한 결과, 표준편차가 X는 약 62cm, Y는 약 76cm 정도가 발생하였다. 이 결과는 축적 1:5,000 수치지도의 정확도 요구를 충분히 만족시킬 수 있는 양호한 결과임을 알 수 있다. Direct Georeferencing에 의한 정사영상의 제작방법은 큰 크기의 과대오차가 발생하는 부분을 수작업 또는 반자동으로 해결할 수 있으면 효율적으로 수치지도를 수정/갱신 할 수 있을 것으로 판단된다.

  • PDF

A Pilot Project on Producing Topographic Map Using Medium Resolution Satellite Image (중해상도 위성영상을 이용한 지도제작 시험연구)

  • 박희주;한상득;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.373-383
    • /
    • 2001
  • This study conducted pilot mapping project to know the possibility of mapping with medium resolution satellite imageries. For this purpose, mapping experiments were conducted with each stereo model imageries of SPOT, KOMPSAT, and IRS- lC. And positional accuracy, analysis of detectable and describable features, and comparison with existing digital map were checked, possible mapping scale and cost analysis were conducted with these results. Regarding SPOT imagery, digital photogrammetric workstation was used for stereoplotting. Regarding KOMPSAT and IRS-lC imageries, because there were data format support problems. head-up digitizing was performed with ortho imageries rectified with DEMs generated by image matching. The results of experiments show that such features as wide road, river, coast line, etc are possible to detect and depict but many other features are not for SPOT, KOMPSAT, and IRS-lC imageries. On the aspect of mapping, therefore, SPOT is available for 1/50,000 topographic map revision, KOMPSAT and IRS-lC for 1/25.000 topographic map revision.

  • PDF

The Development of Editing Program in Small-Scale Mapping using a Genetic Algorithm (유전자 알고리즘을 이용한 소축척지도제작 편집 프로그램 개발)

  • 김현덕;박경식;최석근;이재기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.335-341
    • /
    • 2004
  • 소축척지도제작을 위한 자동화 처리 과정에서는 기하학적 및 논리적 오류가 발생하고, 기하학적 오류는 많은 부분에서 자동화 처리가 가능하나 논리적 오류는 여러 가지 경우에 대하여 자동 판단이 곤란한 경우가 많기 때문에 대부분 수작업으로 이루어지고 있는 실정이다. 따라서, 본 연구는 수치지도를 이용한 일반화 처리 후의 지형도 제작시에서 나타나는 여러 가지 문제 중 도로과장화로 인한 오류문제를 해결하기 위하여 도로와 건물 폴리곤간의 겹침위치를 자동 탐색하고, 이를 자동처리하기 위한 프로그램을 유전자 알고리즘을 이용하여 개발하였다. 그 결과 지도제작 과정에서 발생하는 오류를 해결할 수 있었고, 지도제작 자동화율을 향상시킬 수 있었다.

  • PDF

A Study on Viewer Program Development for Usage at Mobile Device of Digital Map Ver. 2.0 (수치지도 Ver. 2.0 Mobile Viewer 개발에 관한 연구)

  • Jeon, Jae-Yong;Choi, Young-Taek;Guak, Dong-Wook;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.79-85
    • /
    • 2005
  • Early, national basic topographical map has been represented, stored, supplied in form of DXF(Data eXchange Format) and present digital map is equipped as over form. Since many parts of digital map has been equipped newly to use early digital map form for geographic information system. Especially, many structural editing and geographical search are demanded to exclude geometric inconsistency and logical inconsistency included in the existing digital map. As above, DXF is unsuitable data format to use in geographic information system. For the sake of efficient format, Digital Map Ver. 2.0 that is new map format was developed. In this study, we developed the Mobile Viewer program development which can let us see immediately the digital maps produced in the form of Digital Map Ver. 2.0.

  • PDF

Developing a Work Procedure for Efficient Map Generalization (효율적인 일반화 자료처리를 위한 작업공정 개발)

  • Choi, Seok-Keun;Kim, Myung-Ho;Hwang, Chang-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.73-82
    • /
    • 2003
  • This paper proposes a work procedure for generalizing large-scale digital maps ver. 2.0(1/5,000) into a small-scale digital map(1/25,000). Unlike a existent digital map, the digital map ver. 2.0 has a variety of attribute data as well as graphic data. To perform an efficient map generalization with these structural properties, we establish a work procedure as follow; firstly, delete layers which don't exist in small-scale digital map's feature code, and secondly, generalize features which have been classified into 8 layers, and finally merge 8 layers which have been generalized into 1 layer. Therefore, we expect that a work procedure which is proposed in this paper will play a fundamental role in automated generalization system and will contribute to small-scale digital mapping and thematic mapping.

  • PDF

Generation of a City Spatial Model using a Digital Map and Draft Maps for a 3D Noise Map (3차원 소음지도제작을 위한 도화원도와 수치지도를 이용한 도시공간모델 생성)

  • Oh, So-Jung;Lee, Im-Pyeong;Kim, Seong-Joon;Choi, Kyoung-Ah
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.179-188
    • /
    • 2008
  • This study aims for generating a city spatial model required for the creation of a 3D noise map. In this study, we propose an efficient method to generate 3D models of the terrain and buildings using only a digital map and draft maps previously established without using any sensory data. The terrain model is generated by interpolating into a grid the elevation values derived from both the contour lines and the elevation point of the digital map. Building model is generated by combining the 2D building boundaries and the building elevations extracted from the digital map and the draft map, respectively. This method has been then applied to a digital map and three sets of draft maps created in the different times. covering the entire area of Yeongdeungpo-gu. The generated city spatial model has been successfully utilized for the noise analysis and the 3D visualization of the analysis results.

A method of saving Digital Map which was made through Aerial Photography to ORDBMS (항공사진을 통해 제작된 수치지도의 ORDBMS 저장 방안)

  • Woo, Jae-Nam;Park, Hee-Soon;Kwon, Chang-Hee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.831-837
    • /
    • 2009
  • This paper suggests the method for saving the digital map which was made through aerial photography to ORDBMS (Object Relational Database Management System) and analyze its efficiency through experiments. The digital map has been used by file units because of managing or providing it to others. But this way can not get sequential graphic entities and just use it which was included in only one map. In this paper, we saved the digital map to ORDBMS at a time after converted the digital map entities based on the tile to the things can be inserted to ORDBMS. And, we also proved the possible methods to extract the graphic entities what we need from entire blueprint through experiments.

  • PDF

The Analysis of Positional Accuracy with Input/Output Instruments in Digital Mapping of National Base Map (국가기본도 수치지도제작 과정에서 입출력장비에 따른 위치정확도 분석)

  • 이현직;손덕재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.291-297
    • /
    • 1998
  • In order to accomplish the digital map production I/O devices should be used which are used for data input procedure to convert original paper map(hardcopy) data into computer compatible digital map data, and for the mapsheet output procedure of worked out data. For the input device, digitizer and scanner are most frequently used. Digitizer has possibility of direct production of digital data, and are mainly used for input procedure of partly plotted source map. In contrary, scanner is rather easy to operate the instrument, so that is widely used for the input procedure of original sheet map. In this study, to extract the input device characteristics, some kinds of digitizers and scanners were cheesed and used for the positional error analysis through the operational method and types of instruments. Also for the output device characteristics, some kinds of plotter and materials are used and compared to analyze the positional error through the instrumental types and output sheet materials.

  • PDF