• Title/Summary/Keyword: 수치적 격자생성

Search Result 136, Processing Time 0.021 seconds

The Numerical Study on the Ventilation of Non-isothermal Concentrated Fume (수치해석적 방법을 이용한 비등온 고농도 연무의 배기량 산정에 관한 연구)

  • Lim, Seok-Chai;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.534-543
    • /
    • 2008
  • The experimental study with the prototype provides more acceptable data than the others. But there are so many limited conditions to perform the experimental study with the prototype. So the theoretical similitude with the scaled model and the numerical study with the CFD method have been chosen alternatively to analysis the fume movement. In this study, the ventilation was estimated from the results of the numerical study based on the experimental results as the boundary conditions. The grid A and B were same size and shape with the models which was used in the experimental study and consisted with 163,839, 122,965 cells respectively. The height of the fume layer was estimated form the mole fraction of fume components and the ventilation was determined by the velocity and temperature of the fume. The results of this study showed that the fume movements estimated from the numerical study are enough to apply to the prototype if there are proper heat loss correction factors. The numerical study is easier to change study conditions and faster to get results from the study than the experimental study. So if we find some proper heat loss correction factors, it's possible to execute the various and advanced study with the numerical study.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

Establishment of 2-Dimensional Flood Inundation Analysis Method Considering Building Effects (건물의 영향을 고려한 제내지에서의 2차원 침수해석 기법 확립)

  • Cho, Wan-Hee;Han, Kun-Yeun;Ha, Chang-Yong;Kim, Young-Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.739-743
    • /
    • 2010
  • 본 연구에서는 확산파 기반의 2차원 침수해석 모형을 이용하여 울산광역시 태화강 유역에 대하여 침수시 건물 안으로의 흐름은 없다는 가정 하에서 건물로 인한 흐름의 양상, 침수심, 침수위등을 분석하였다. 지형자료는 최근 대도시를 중심으로 구축되고 있는 1m 간격으로 수집된 LiDAR 자료를 바탕으로 10m간격의 정형격자를 통하여 지형자료를 생성하였으며, 수치지도로부터 추출된 건물을 ArcView 등의 GIS Tool을 활용하여 LiDAR 자료와 합성하여 2차원 침수해석에 적용되는 지형자료를 구성하였다. 200년 빈도의 확률강우에 대한 유출해석 결과를 이용하여 FLDWAV 모형을 적용한 태화강에 대한 1차원 하천해석을 실시하였고, 제방파제에 대한 가상의 시나리오를 생성하여 파제에 따른 외수범람에 대한 2차원 침수해석을 실시하였으며, 침수해석 결과를 각 시간별로 가시화함으로써 효율적이며 정확한 침수해석 방법을 제안하고자 하였다. 침수해석 결과에 대한 분석을 통하여 침수면적에 따른 적합도가 건물의 영향을 고려한 경우와 그렇지 않은 경우를 비교한 결과 90%이하로 떨어지는 것을 확인하였고, 침수심과 침수위에 대한 분석을 통하여 침수심은 건물 영향 고려시 낮게 산정되나 침수위로 고려시 높은 수위 값을 나타내는 것을 확인하였다.

  • PDF

Development of Two Dimensional Blade Section with High Efficiency for Marine Propeller (선박 프로펠러용 고효율 2차원 날개단면 개발)

  • Na, Yun-Cheol;Song, In-Haeng;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.11-23
    • /
    • 1997
  • This paper contains a new approach to blade section design method for marine propellers. The hydrodynamic characteristics of 2-D section are highly influenced by its geometrical parameters i.e., thickness and camber distributions and leading edge radius etc. To consider fully turbulent flow field near 2-D section. the finite volume method with k-${\varepsilon}$ turbulent model which solve Reynolds time averaged Navier-Stokes(RANS) equation is applied. In this study, O-type grid system that can provide many calculation points on blade surface is used. The results were compared with those of the experiment of NACA0012 to confirm the accuracy of the developed codes. The goal of this study is the development of a blade section with high efficiency and low drag. To achieve this, we carried out the tests of lift, drag and cavitation characteristics in cavitation tunnel. The results of experiment were compared with numerical results in order to validate the proposed blades design method. By comparing the numerical results with the experiments, we found that the new blade section, KH28 allows superior performance in efficiency and cavitation avoidance characteristics. We further investigated the blade section design method and an application study of this section, KH28 to apply to the marine propeller. In order to improve the accuracy of numerical results on prediction of lift and drag, we conclude here that the 2-layer boundary model must be used.

  • PDF

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay (동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구)

  • Lee, Han Soo;Komaguchi, Tomoaki;Yamamoto, Atsushi;Hara, Masanori
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.335-347
    • /
    • 2013
  • In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.

Measurement of Refractive Index Profile of Optical Fiber Using the Diffraction Phase Microscope (회절위상현미경을 이용한 광섬유의 굴절률 프로파일 측정)

  • Jafar-Fard, Mohammad R.;Moon, Sucbei
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.135-142
    • /
    • 2012
  • We have developed a measurement method of the refractive index profile of an optical fiber by using diffraction phase microscopy. In the microscope system, the reference light was extracted directly from the probe light that passed through the sample by means of pinhole filtering with a diffraction grating. The spatial interference pattern produced by the probe light and the reference light was processed to generate the phase image of the sample fiber. The index profile was obtained by the inverse Abel transform of the phase profile. In order to remove the background phase that originated from the index difference between the cladding and the surrounding medium, the background phase was calculated from the phase data of the cladding to make a core phase profile that can be directly transformed to the index profile of the core without the full phase image that includes the entire cladding part.

Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition (연소실 경계조건 변화에 따른 핀틀 노즐의 동특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Choi, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.22-31
    • /
    • 2018
  • In this study, numerical simulations were performed to determine the dynamic characteristics of a pintle nozzle, with changes to the chamber boundary conditions. To apply movement, to the pintle, the nozzle and pintle were created separately by an auto-grid generation program using an overset grid method. The chamber boundary conditions were selected between a constant mass-flow rate condition and a propellant burn-back condition. The pressure and thrust characteristics of the constant mass-flow rate condition were determined by changing the ratio of the mass-flow rate in the inlet. The propellant burn-back condition was considered by formulation of the combustion rate. The burn-back conditions represented nonlinear phenomena, unlike the constant mass flow rate, and a small flow rate resulted in a large change in the chamber pressure.