• Title/Summary/Keyword: 수치실험실

Search Result 125, Processing Time 0.018 seconds

Barrier Techniques for Spinal Cord Protection from Thermal Injury in Polymethylmethacrylate Reconstruction of Vertebral Body : Experimental and Theoretical Analyses (Polymethylmethacrylate를 이용한 척추체 재건술에서 척수의 열 손상을 방지하기 위한 방어벽 기법 : 실험적 및 이론적 분석)

  • Park, Choon Keun;Ji, Chul;Hwang, Jang Hoe;Kwun, Sung Oh;Sung, Jae Hoon;Choi, Seung Jin;Lee, Sang Won;Park, Sung Chan;Cho, Kyeung Suok;Park, Chun Kun;Yuan, Hansen;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • Objective : Polymethylmethacrylate(PMMA) is often used to reconstruct the spine after total corpectomy, but the exothermic curing of liquid PMMA poses a risk of thermal injury to the spinal cord. The purposes of this study are to analyze the heat blocking effect of pre-polymerized PMMA sheet in the corpectomy model and to establish the minimal thickness of PMMA sheet to protect the spinal cord from the thermal injury during PMMA cementation of vertebral body. Materials & Methods : An experimental fixture was fabricated with dimensions similar to those of a T12 corpectomy defect. Sixty milliliters of liquid PMMA were poured into the fixture, and temperature recordings were obtained at the center of the curing PMMA mass and on the undersurface(representing the spinal cord surface) of a prepolymerized PMMA sheet of variable thickness(group 1 : 0mm, group 2 : 5mm, or group 3 : 8mm). Six replicates were tested for each barrier thickness group. Results : Consistent temperatures($106.8{\pm}3.9^{\circ}C$) at center of the curing PMMA mass in eighteen experiments confirmed the reproducibility of the experimental fixture. Peak temperatures on the spinal cord surface were $47.3^{\circ}C$ in group 2, and $43.3^{\circ}C$ in group 3, compared with $60.0^{\circ}C$ in group 1(p<0.00005). So pre-polymerized PMMA provided statistically significant protection from heat transfer. The difference of peak temperature between theoretical and experimental value was less than 1%, while the predicted time was within 35% of experimental values. The data from the theoretical model indicate that a 10mm barrier of PMMA should protect the spinal cord from temperatures greater than $39^{\circ}C$(the threshold for thermal injury in the spinal cord). Conclusion : These results suggest that pre-polymerized PMMA sheet of 10mm thickness may protect the spinal cord from the thermal injury during PMMA reconstruction of vertebral body.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.