• 제목/요약/키워드: 수치기상예보

Search Result 161, Processing Time 0.032 seconds

발전용 댐 유입량 예측 정확도 향상을 위한 레이더와 수치예보 예측강우 병합기법 연구 (Study on blending radar and numerical rainfall prediction to improve hydroelectric dam inflow forecasts accuracy)

  • 윤성심;신홍준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2023
  • 발전용댐의 댐 유입량 예측 및 운영을 위해서 (주)한국수력원자력에서는 수자원통합 운영시스템(Water resources Integrated System, WIOS)을 운영 중에 있다. 해당 시스템에서는 댐 유입량을 예측하기 위해서 기상청 수치예보모델 중 하나인 국지예보모델(Local Data Assimilation and Prediction System, LDAPS)의 예측강우를 수문모형의 입력자료로 활용하고 있으며, 레이더 기반의 초단시간 강우예측 기법을 자체 개발 중에 있다. 기상청 국지예보모델은 강우의 on/off에 대한 정확도는 90%를 상회할 만큼 높으나 정량적인 강우량의 정확도는 매우 낮고, 레이더 기반의 초단시간 예측 강우는 선행 1~2시간 예측에서는 정량적 정확도는 높으나, 그 이후 예측성능이 급격히 떨어지는 경향을 보인다. 따라서 댐 유입량의 정량적 예측 정확도를 확보하기 위해 초단시간 모델과 국지예보모델의 강우예측 결과를 병합(blending)하는 기법을 적용하여 초기 6시간 동안의 예측 성능을 향상시켜야 한다. 본 연구에서는 선행시간 0~6시간에 대해서 병합하는 기법들을 적용하고 평가하고자 한다. 기본적으로 병합은 초단시간 예측강우와 수치예보자료 간 가중치를 통해 수행된다. 일반적으로 초기 1시간 선행시간에서 레이더 기반 예측강우는 완벽한 예측자료(외삽 관측자료의 가중치는 1.0)로 가정하며, tanh 함수를 이용하여 선행시간의 증가에 따라 가중치를 감소시키면서, 6시간 선행시간에서는 수치예보 예측강우가 완벽한 예측자료라고 가정한다. 본 연구에서는 일반적인 병합 방법 외에 병합된 예측강우에 과거 관측강우와 예측강우의 평균편이를 적용하여 보정하는 방법, 사례별 변동성이 큰 병합된 예측강우 특성을 고려하여 병합 가중치를 신뢰도에 따라 가변시키는 방법을 적용하여 평가한다. 이를 통해 댐 유입량 예측에 최적이 되는 병합기법을 선정하고자 한다.

  • PDF

ESP와 RDAPS 수치예보를 이용한 장기유량예측 (Long-term Streamflow Prediction Using ESP and RDAPS Model)

  • 이상진;정창삼;김주철;황만하
    • 한국수자원학회논문집
    • /
    • 제44권12호
    • /
    • pp.967-974
    • /
    • 2011
  • RDAPS 수치예보로부터 생산된 일단위 강우시계열을 바탕으로 유량 예측을 모의하고, 정성적인 중장기 예보를 고려한 ESP 분석을 수행하여 결과를 비교하고 적용성을 검토하였다. 금강유역을 대상으로 ESP, 정성적 기상예보를 고려한 ESP, RDAPS 기상수치예보에의한유량예측결과를평균유출량과비교 분석을 통해각기법별 결과의 개선효과를 평가하였다. 예측 모의 결과 기상정보를 고려한 ESP 방법의 결과가상대적으로 양호한 것으로 분석되었다. 확률예측의 정확도를 평가하기 위한 불일치율(Discrepancy Ratio) 분석 결과에서도 같은 결과를 얻었다. RDAPS 수치예보의 경우 3시간 단위의 누적강수라는 특성이 감안된 시간분해능을 갖는 일단위 시나리오로 개선되거나 장기간 동안 지속적인 모의 평가가 이루어진다면 더욱 정밀한 유량예측을 모의 할 수 있을 것으로 예상된다.

단기 예측강우를 활용한 유출량 예측 활용 (Application on the Coupled Short-Term Precipitation-Stream Flow Forecast)

  • 윤원진;김진훈;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.308-312
    • /
    • 2004
  • 본 연구에서는 기상 수치모델의 예측강우량을 활용하여 단시간 하천유출량을 계산할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 수자원공사의 치수모델인 KOWACO 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하려다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과, RDAPS 및 AWS MAP 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필요한 정량적 성격을 어느 정도 충족시키는 것으로 나타났다. RDAPS-KOWACO 연계 모형의 하천유출량 계산에서도 그 정확도가 비교적 높은 것으로 검토되어 현재의 하천 유출량 예측에서 기상 수치예보자료의 활용성은 매우 놀은 것으로 사료된다.

  • PDF

호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 연구 (A Study on the Hydrological Quantitative Precipitation Forecast(HQPF) based on Machine Learning for Rainfall Impact Forecasting)

  • 추경수;신윤후;김성민;지용근;이영미;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.63-63
    • /
    • 2022
  • 기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.

  • PDF

강우장의 연속 이류특성을 활용한 레이더 강수량 예측성 평가 (Radar rainfall forecasting evaluation using consecutive advection characteristics of rainfall fields)

  • 김태정;김장경;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.39-39
    • /
    • 2021
  • 기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.

  • PDF

작전기상 지원을 위한 PC 클러스터 기반의 기상수치예보시스템 (A Numerical Weather Prediction System for Military Operation Based on PC cluster)

  • 이용희;장동언;안광득;조천호
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.45-55
    • /
    • 2003
  • Weather conditions have played a vital role in a war. Many historical records reported that the miss use of weather information is the main reason of the lost a war. In this study we demonstrated the possibility of applying the numerical weather prediction system(NWPS) for military operations. The NWPS consists of PC-cluster as a super computer, data assimilation system ingesting many remote sensing observation, and graphic systems. High resolution prediction in NWPS can provide useful weather information such as wind, temperature, sea fog and so on for military operations.

인공신경망을 이용한 RDAPS 강수량 예측 정확도 향상 (Improving Accuracy of RDAPS Prediction Precipitation using Artificial Neural Networks)

  • 신주영;최지안;정창삼;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1013-1017
    • /
    • 2008
  • 이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.

  • PDF

행정구역 홍수위험 판단기준 설정 방안 연구 (A Study on Guideline of Flood Risk Evaluation Standards by Local Authorities)

  • 최천규;김경탁;최윤석;김길호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.366-366
    • /
    • 2019
  • 홍수피해가 발생하면 사회 전반에 걸쳐 큰 영향을 끼치게 된다. 이에 국내에서는 홍수로 인한 피해를 경감하기 위한 방법 중 하나로 홍수정보를 제공하고 있다. 기상청은 예상되는 강우량을 수치예보를 활용하여 기상특보를 제공하고 있으며, 홍수통제소는 하천에서 예상되는 홍수위를 기준으로 홍수특보를 발령하고 있다. 그러나 기상특보는 전국을 동일한 기준으로 홍수위험을 전망하여 각 행정구역별 특성을 반영하지 못하며, 홍수특보는 주요 하천이 없는 행정구역은 활용할 수 없다는 한계를 가지고 있다. 본 연구에서는 과거 홍수피해 현상 조사를 통해 제시된 각 행정구역별 강우기준과 수치예보 자료 중 하나인 국지규모 앙상블예측시스템(LENS, Local ENsemble Prediction System)자료를 활용하여 홍수위험 매트릭스를 구성하고, 이를 통해 홍수위험 대응단계설정 방안을 제시하고자 하였다. 본 연구에서 제시된 행정구역별 홍수위험 매트릭스는 향후 추가적으로 자료 수집을 통해 매트릭스 적용 및 검토가 이루어져야 할 것으로 판단된다.

  • PDF

수치예보모델 초기치로서 GPS 가강수량 영향 분석 (ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL)

  • 이재원;조정호;백정호;박종욱
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.285-296
    • /
    • 2007
  • 시 공간 분해능이 우수한 GPS 가강수량 자료를 활용하면 강수나 구름과 같이 변동성이 큰 기상현상에 대한 수치예보모델의 예측성 한계를 줄일 수 있다. 이 연구에서는 GPS 가강수량 자료를 수치 예보모델에 초기치로서 적용하기 위해 한국천문연구원과 해양수산부가 운영하고 있는 GPS 상시관측소 자료로부터 GPS 가강수량을 계산하였다. 시 공간적 규모가 작아 기존 수치예보모델에서 예측하기 어려운 국지적 집중호우사례를 선정하였다. 차세대 수치예보모델인 WRF(Weather Research & Forecasting)모델의 3차원 변분동화(3D-Var)기법을 이용하여 GPS 가강수량 자료를 초기치에 동화하였다. 이 연구는 GPS 가강수량 자료가 수치예보모델의 결과에 미치는 영향을 분석하였다. 분석결과를 바탕으로 하여 수치예보모델의 예측성 향상을 위한 연구방향을 제시 하였다.