• Title/Summary/Keyword: 수축 균열

Search Result 322, Processing Time 0.025 seconds

철근콘크리트 건물외벽의 수축균열의 실태와 그 대책

  • Lee, Lee-Hyeong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • v.2 no.1 s.3
    • /
    • pp.65-77
    • /
    • 1992
  • 철근콘크리트 건물에 발생하는 균열은 그 원인이 크게 표1과 같이 콘크리트의 재료성질과 시공 그리고 외적요인과 하중으로 분류되고 있다. 그중 외벽에 발생하는 균열의 원인은 콘크리트 수축에 기인하는 것외에 다짐불량에 의한 코올드 조인트와 철근 부식 등에 의한 팽창균열 등 여러가지가 있다. 본고는 특히 중요한 수축균열에 한정하여 그 실태와 대책의 동향을 설명한다.「수축에 의해 발생하는 균열」의 원인은 콘크리트의 건조수축, 수화열에 의한 열수축 및 외기온의 변동에 의한 온도수축으로 대별될 수 있다. 실제의 건물 외벽균열은 이들이 복합적으로 작용하여 발생한다. 따라서 본 고에서는 이러한 종류의 균열실태에 대해 조사사례와 연구보고를 소개함과 동시에 균열 메카니즘. 방지대책 등에 대해 이해를 돕기 위한 자료를 제공한다. 본고는 1992년 2월에 소유가 발표한 일본 콘크리트 공학의 "RC건물외벽의 수축균열의 실태와 그 대책"을 중심으로 요약한 내용이다.

  • PDF

Reduction of Drying Shrinkage Cracking of Box Culvert for Power Transmission with Shrinkage Reducing Agent (수축저감제 혼입에 따른 전력구 박스구조물의 건조수축균열 저감)

  • Woo, Sang-Kyun;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.102-108
    • /
    • 2016
  • The purpose of this study is to examine the reduction effect of shrinkage reducing agent for drying shrinkage induced cracking and suggest the method of controlling the cracking in concrete box culvert for power transmission. Based on drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves shrinkage reducing effect of shrinkage reducing agent. From the numerical results, it is found that cracking behavior for longitudinal direction and transverse direction due to differential drying shrinkage of box culvert can occur and the experimental observation of concrete cracks support the numerical predictions. The shrinkage reducing agent reduced the concrete cracking by 40~50%, which shows the methodology of controlling of drying shrinkage cracks in box culverts in real construction site.

A Numerical Study on the Characteristics of Plastic Shrinkage Cracking on Concrete Slab with Sequential Placement (분할타설되는 콘크리트 슬래브의 소성수축균열 특성에 대한 해석적 연구)

  • Kwak, Hyo-Gyoung;Ha, Soo-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.795-808
    • /
    • 2006
  • In this paper, an analytical method which can predict the occurrence of plastic shrinkage cracking on concrete slabs with sequential placement is proposed on the basis of the numerical model introduced in the previous study. The influence of many design variables on plastic shrinkage cracking such as the number of layers and the time interval between layers is quantitatively analyzed through parametric studies using the analytical method. In advance, two equations are introduced to take into account the effect of sequential placement on the plastic shrinkage cracking of concrete slab; The first one is to calculate the time at which the surface of concrete slab begins to dry, and the second one is to determine the critical time interval to prevent the surface drying of previously placed concrete layers. The timing of curing and the sequence of concrete placement, which are important for the prevention of plastic shrinkage cracking, can be effectively planned using the introduced both equations without any rigorous analysis.

A Study on the Development of Flat-Ring Type Restrained Test Method and Performance Evaluation for Evaluating Shrinkage Cracking Properties of Concrete in Early Age (콘크리트 초기 수축균열특성 평가를 위한 판상-링형 구속시험방법의 성능평가에 관한 연구)

  • Kim, Gyu-Yong;Choi, Hyeong-Gil;Lee, Eui-Bae;Nam, Jeong-Soo;Han, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.188-196
    • /
    • 2009
  • In Concrete, shrinkages occur like plastic shrinkage and drying shrinkage in the early age because of evaporation and transfer of moisture. Within the country, the crack test standardized by KS is used to test the drying shrinkage of the concrete by using the restricted drying shrinkage of Dumbbell type mold, but this test is for the cracking-point and the restricted shrinkage stress. Thus it is difficult to valuate the crack quantitative test. In this study, it is intended to develop the Flat-ring type restrained test method for the shrinkage deformation movement of the concrete and to provide the quantitative data for evaluating the cracks in concrete. And it suggest the proper specimen diameter and quantitative test method about shrinkage crack properties on Flat-ring type restrained test method. And Verified the suitability.

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

A Parametric Study on the Reason and Control of Crack during the Construction of Pier in Urban Transit (도시철도 교각의 시공중 균열발생 원인과 제어방안을 위한 매개변수 연구)

  • Park, Seong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.555-561
    • /
    • 2011
  • This paper is designed to propose methods to both analyze and control the reasons for cracks appearing during the construction of piers. For this aim, a numerical analysis was performed to identify the properties of crack which resulted from heat of hydration and differential drying shrinkage with the key influence factors considered. The results show that the thermal cracks occurred within a few days, and the drying shrinkage cracks within a few weeks. Meanwhile, settlement shrinkage cracks occurred within a few hours. Discussing the control methods based on the time of the cracks appearing, quality control, reduction of the unit quantity of cement, and the preservation of moisture on the surface are proposed as the realistic and effective methods for preventing settlement cracks, thermal cracks, and drying shrinkage cracks respectively.

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.

Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete (초고강도 콘크리트의 수축 균열 특성 및 구속도 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • The concrete cracking from the restrained stress caused by the shrinkage may play significant cause of deterioration of concrete structures by allowing the permeation of sulphate and chloride ions which in turn triggers corrosion of steel reinforcement. In particular, the cracking becomes more critical as water binder ratio (W/B) is reduced and concrete strength increases. Therefore, it needs to evaluate correctly the comprehensive shrinkage behavior of concrete with high strength: high-strength concrete (HSC), ultra-highstrength concrete (UHSC). The unrestrained shrinkage tests, however, cannot estimate the net shrinkage effectively which affects cracking after full development of strength and stiffness because it does not consider the degree of restraint, strength development, stress relaxation, and so on. Therefore, in this study, both free and restrained shrinkage tests with variables of W/B (W/B of 30, 25 and 16%) and admixtures (fly ash (FA) and granulated blast-furnace slag (BFS)) for HSC, very-high-strength concrete (VHSC) and UHSC were performed. The test results indicated that the autogenous shrinkage and total shrinkage at drying condition were reduced as W/B increased and FA, BFS were added, and the cracking behavior was suppressed as W/B increased and FA was added.

An Introduction to the Shrinkage Strip for the Crack Control in the Underground Parking Structure (지하주차장의 수축대 시공사례)

  • 김록배;김욱중;이도범;이운세
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • 일반적으로 공동주택 지하주차장과 같이 구조물이 대형화되거나 복잡할 경우 구조물의 응력취약 부위에서 균열, 누수 등의 문제가 발생할 확률이 크다. 이에 대한 대책으로 설계자들은 신축줄눈을 선호하고 있으나 신축줄눈은 시공상의 어려움과 사용 중 잦은 하자 발생이라는 문제점을 안고 있다. 이 때문에 근래에 들어 대형 건물을 한 단위로 처리하고 철근으로 보강하려는 경향이 있으나 구속도 차이에 따라 균열, 누수 등의 문제가 여전히 발생하고 있다. 이를 해결하기 위하여 수축대를 설치하여 일정 요구량의 초기 수축량을 수축대에서 흡수하고 이후 수축대 부위에 콘크리트를 메워 일체화시킴으로써 초기 수축에 의한 균열을 상당부분 방지할 수 있다.(중략)