• Title/Summary/Keyword: 수축각

Search Result 369, Processing Time 0.032 seconds

Development of low deformation ATIG welding process for high penetration aspect ratio in thick stainless steel welding (후판 스테인리스 용접에서 높은 용입형상비의 저변형 ATIG용접 공정 개발)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Ha, Jong-Moon;Im, Sung-Bin;Oh, Dong-Soo;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.7-7
    • /
    • 2009
  • TIG 용접에서는 후판 용접의 경우 용입의 한계 때문에 깊고 넓은 그루브 가공을 하여 다층 용접을 한다. 이 때, 그루브를 채우는 용착금속에 의한 응고 수축과 과대한 입열로 인한 변형이 문제시 되고 있다. 변형을 줄이기 위해서는 용착금속의 양과 입열량을 줄여야 한다. 이러한 문제를 해결하기 위해 그루브의 루트패이스를 두껍게 하고 그루브각을 줄여서 용착량을 줄인다. 이때, 좁은 그루브에서 두꺼운 루트패이스를 완전 용입할 수 있는 용접 프로세스가 필요하다. 비드가 좁고 깊은 용입 특성을 가지는 Plasma welding(PAW) 경우에는 좁은 그루브 속에 토치가 접근하기 어려워 적용하기 어렵다. 따라서 접근성이 용이한 TIG 용접에서 높은 용입형상비를 가지는 용접공정 개발이 필요하다. 선행연구로 높은 용입 형상비를 가지는 Active flux Tungsten Inert Gas(ATIG) 용접이 연구되었다. ATIG의 용입 증가 메커니즘으로는 Marangoni effect, 음이온들로 인한 아크 수축 효과, 절연 플럭스에 의한 아크 수축효과 등으로 알려져 있다. 또한 선행연구에서 ATIG에서 Ar가스에 He 또는 $H_2$ 가스를 첨가하면 용입이 더욱 증가하는 것을 확인하였다. 본 연구에서는 A-TIG에 He 가스를 적용하고 아크길이 0.5mm, 1.0mm, 2.0mm와 전극 선단각 30도, 60도, 90도에 따른 용입 형상비와 변형량을 검토하기 위해 실험을 하였다. 실험 결과는 아크길이가 감소할수록 전극 선단각이 증가할수록 용입 형상비는 증가하였고, 변형량은 감소하였다.

  • PDF

Competitive Adsorption for Binary Mixture of 4-Nitrophenol and Phenol on RSTA using GAC (GAC를 이용한 RSTA에서 Phenol과 4-Nitrophenol의 이성분계 경쟁흡착)

  • Lee, Seung-Mok;Kim, Dae-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.723-731
    • /
    • 2000
  • In recent years, the amount and number of synthetic organic compounds(SOCs) discharged from various industries has been increasing. Granular activated carbon(GAC) adsorption is one of the best available technology to remove SOCs from water supplies and wastewater. In this paper competitive adsorption for binary mixture of 4-nitrophenol and phenol on reverse stratified tapered adsorber(RSTA) using GAC was studied. Two isotherm experiments were conducted, one for phenol and the other for 4-nitrophenol. The phenol data of binary mixture isotherm were not fitted to Freundlich isotherm. The competitive adsorption increased significantly with decreasing carbon dose and increasing adsorbate concentration. The RSTA was found to provide an increase in breakthrough time when decreasing flow rate, increasing angle and injection layers. The performance enhancement provided by RSTA can be exploited in separation and in the purification of fluids.

  • PDF

Effect of Peptide YY on Vascular Smooth Muscle Contractility (Peptide YY의 혈관 평활근 수축성에 미치는 효과)

  • Lee, Kwang-Youn;Kim, Won-Joon;Ha, Jeoung-Hee;Kwon, Oh-Cheol
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-33
    • /
    • 1990
  • The responsiveness of various arterial smooth muscles isolated from rabbit to peptide YY (PYY) and the calcium source responsible for the muscles to contract were studied in vitro. PYY contracted the muscle strips of femoral, basilar and common iliac arteries more sensitively than renal, superior mesenteric and common carotid arteries. Common carotid and renal arteries were less sensitive to PYY $(p{\leqslant}0.05)$ than to NE; and basilar artery was more sensitive to PYY$(p{\leqslant}0.01)$ than to NE. A calcium channel blocker, verapamil and an inhibitor of intracellular calcium release, 3, 4, 5-Trime-thoxybenzoic arid 8-(diethylamino)octyl ester [TMB-8] significantly $(p{\leqslant}0.001)$ suppressed the concentration-response of the strips from femoral artery to PYY. When both verapamil and TMB-8 existed in normal PSS, the concentration-response to PYY was inhibited almost completely; and a similar suppression was observed when the muscle was incubated in calcium-free, ethyleneglycol-bis-(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid [EGTA] containing PSS. The results of these experiments suggest that increased PYY activity in circulation may result in the more sensitive increase in the intracranial vascular resistance and the cerebral arterial pressure than the increased sympathetic activity and that both intra- and extracellular calcium are to be utilized for the PYY-induced contraction on arterial smooth muscle.

  • PDF

EFFECT OF VARIOUS LINERS ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (수종의 이장재가 복합레진의 중합수축에 미치는 영향)

  • Choi, Ji-Won;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.606-614
    • /
    • 2006
  • The purpose of this study was to evaluate the polymerization contraction of composite resin(Tetric $ceram^{(R)}$, Ivoclar Vivadent Liechtenstein) according to various liners(Tetric $flow^{(R)}$, Ivoclar Vivadent, Liechtenstein/$Ionosit^{(R)}$, DMG, German/ $Vitrebond,^{TM}$ 3M-ESPE, USA). The strain gauge method was used for measurement of polymerization shrinkage strain. Specimens were divided by 8 groups according to curing units and liners. Group A, E: Tetric $ceram^{(R)}$ bulk filing, Group B, F: Tetric $flow^{(R)}$ lining, Tetric $ceram^{(R)}$ filling, Group C, G: $Ionosit^{(R)}$ lining, Tetric $ceram^{(R)}$ filling, Group D, H: $Vitrebond^{TM}$ lining, Tetric $ceram^{(R)}$ filling. Group A, B, C and D were cured using the conventional halogen light($XL3000^{TM}$ 3M ESPE, USA) for 40 seconds at $400mW/cm^2$. Group E, F G and H were cured using light emitted diode(LED) light(Elipar Freelight $2^{TM}$, 3M-ESPE, USA) for 15 seconds at 800 $mW/cm^2$. Strain gauge attached to each sample was connected to a strainmeter. Measurements were recorded at each second for the total of 750 seconds including the periods of light application. Obtained data were analyzed statistically using Repeated measures ANOVA and Tukey test. The results of this were as follows : 1. Contraction stresses in flowable resin and glass ionomer lining group were lower than that in compomer lining group(p<0.05). 2, Contraction stresses in LED curing light groups were higher than that in halogen curing light groups, but there was no significant difference (p>0.05).

  • PDF

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

A STUDY ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO VARIOUS LIGHT-CURING METHODS (광조사 방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kwon, Oh-Jin;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The purpose of this study was to evaluate the linear polymerization shrinkage(%) and microhardness of composite resin(Z-100, 3M, USA) according to 2-step light curing method. Conventional light curing unit(Curing Light 2500, 3M USA) and 2-step light curing unit(Elipar Highlight, ESPE, Germany) were used as light source. The strain gauge method was used for determination of polymerization shrinkage(%). Samples were divided by 3 groups according to light curing methods (Group I : $450mW/cm^2$, 40sec, Group II : $650mW/cm^2$, 40sec, Group III : $150mW/cm^2$, 10sec & $650mW/cm^2$, 30sec). Preparations of acrylic molds were followed by filling and curing. Strain gauges attached to each sample were connected to a strainmeter. Measurements were recorded at each second for the total of 10 minutes including the periods of light application. And microhardness of each group after 24hours from light irradiation were measured. Obtained data were analyzed statistically using Ore-way ANOVA and/or Scheffe test. The results of the present study can be summarized as follows: 1. Composite resin in acrylic molds showed the initial expansion at the early phase of polymerization. This was followed by the contraction with the rapid increase in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The lowest linear polymerization shrinkage(%) was found in group III followed by group I, II during the measuring periods. 3. Group III using 2-step curing method showed statistically significant reduction of linear polymerization shrinkage(%) compared with group I, II at 1 minute and 10 minutes from light irradiation(p<0.05). 4. The microhardness values of each group not revealed significant difference.

  • PDF

Prediction of Spring-in of Curved Laminated Composite Structure (굴곡 형상 복합재 구조물의 스프링-인 예측)

  • Oh, Jae-Min;Kim, Wie-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This paper predicts the spring-in effect of curved laminated composite structure for various stacking sequence using finite element analysis(ABAQUS). In composite manufacturing process, large temperature difference, different coefficient of thermal expansion and chemical shrinkage effect cause distortion of composite parts such as spring-in and warpage. Distortion of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In finite element analysis, a CHILE(Cure Hardening Instantaneously Linear Elastic) model and chemical shrinkage effects are considered developing user subroutine in ABAQUS and some cases are simulated.

CUSPAL DEFLECTION IN CLASS V CAVITIES RESTORED WITH COMPOSITE RESINS (5급 와동의 복합레진 수복 시 발생되는 교두굴곡에 관한 연구)

  • Park, Jun-Gyu;Lim, Bum-Soon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of the polymerization shrinkage and modulus of elasticity of composites on the cusp deflection of class V restoration in premolars. The sixteen extracted upper premolars were divided into 2 groups with similar size. The amounts of cuspal deflection were measured in Class V cavities restored with a flowable composite (Filtek flow) or a universal hybrid composite (Z-250). The bonded interfaces of the sectioned specimens were observed using a scanning electron microscopy (SEM). The polymerization shrinkage and modulus of elasticity of the composites were measured to find out the effect of physical properties of composite resins on the cuspal deflection. The results were as follows. 1. The amounts of cuspal deflection restored with Filtek flow or Z-250 were $2.18\;{\pm}\;0.92{\mu}m$ and $2.95\;{\pm}\;1.13\;{\mu}m$, respectively. Filtek flow showed less cuspal deflection but there was no statistically significant difference (p > 0.05). 2. The two specimens in each group showed gap at the inner portion of the cavity. 3. The polymerization shrinkages of Filtek flow and Z-250 were 4.41% and 2.23% respectively, and the flexural modulus of elasticity of cured Filtek flow (7.77 GPa) was much lower than that of Z-250 (17.43 GPa). 4. The cuspal deflection depends not only on the polymerization shrinkage but also on the modulus of elasticity of composites.

POLYMERIZATION SHRINKAGE OF COMPOSITE RESINS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도 중합에 따른 복합레진의 중합수축에 관한 연구)

  • Lim, Mi-Young;Cho, Kyung-Mo;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The purpose of this study was to compare the effect of exponential curing method with conventional curing and soft start curing method on polymerization shrinkage of composite resins. Three brands of composite resins (Synergy Duo Shade, Z250, Filtek Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trilight) were used. 40 seconds curing time was given. The shrinkage was measured using linometer for 90 seconds. The effect of time on polymerization shrinkage was analysed by one-way ANOVA and the effect of curing modes and materials on polymerization shrinkage at the time of 90s were analysed by two-way ANOVA. The shrinkage ratios at the time of 20s to 90s were taken and analysed the same way. The results were as follows : 1. All the groups except Supreme shrank almost within 20s Supreme cured by soft start and exponential curing had no further shrinkage after 30s (p < 0.05). 2. Statistical analysis revealed that polymerization shrinkage varied among materials (p = 0.000) and curing modes (p = 0.003). There was no significant interaction between material and curing mode. 3. The groups cured by exponential curing showed the statistically lower polymerization shrinkage at 90s than the groups cured by conventional curing and soft start curing (p < 0.05). 4. The initial shrinkage ratios of soft start and exponential curing were statistically lower than conventional curing (p < 0.05). From this study, the use of low initial light intensities may reduce the polymerization rate and, as a result, reduce the stress of polymerization shrinkage.

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.