• Title/Summary/Keyword: 수집시간

Search Result 3,472, Processing Time 0.029 seconds

Effect of the Suicide Prevention Program to the Impulsive Psychology of the Elementary School Student (자살예방 프로그램이 초등학교 충동심리에 미치는 영향)

  • Kang, Soo Jin;Kang, Ho Jung;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • In this study, the early suicide prevention program was applied to the elementary school students and compared the prior & post effect of the program, and verified the status of psychology change like emotional status, or temptation to take a suicide, and presented the possibility as a suicide prevention program. The period of adolescence is the very unstable period in the process of growth being cognitively immature, emotionally impulsive period. It is the period emotionally unstable and unpredictable possible to select the method of suicide as an extreme method to escape the reality, or impulsive problem solving against small conflict or dispute situation. Many stress of the student such as recent nuclear family, expectation of parents to their children, education problem, socio-environmental elements, individual psychological factor lead students to the extreme activity of suicide in recent days. In this study, the scope of stress experienced in the elementary school as well as idea and degree of temptation regarding suicide by the suicide prevention program were identified, and through prevention program such as meditation training, breath training and through experience of anger control, emotion-expression, self overcome and establish positive self-identity and make understanding Self-control, Self-esteem & preciousness of life based on which the effect to suicide prevention was analyzed. The study was made targeting 51 students of 2 classes of 6th grade of elementary school of Goyang-si and processed 30 minutes every morning focused on through experience & activity of the principle & method of brain science. The data was collected for 20 times before starting morning class by using Suicide Probability Scale(herein SPS-A) designed to predict effectively suicide Probability, suicide risk prediction scale, surveyed by 7 areas such as Positive outlook, Within the family closeness, Impulsivity, Interpersonal hostility, Hopelessness, Hopelessness syndrome, suicide accident. Analytical methods and validation was used the Wilcoxon's signed rank test using SPSS Program. Though the process of program in short period, but there was a effective and positive results in the 7 areas in the average comparison. But in the t-test result, there was a different outcome. It indicated changes in the 3 questionnaires (No.7, No.14, No.19) out of 31 SPS-A questionnaires, and there was a no change to the rest item. It also indicated more changes of the students in the class A than class B. And in case of the class A students, psychological changes were verified in the areas of Hopelessness syndrome, suicide accident among 7 areas after the program was processed. Through this study, it could be verified that different results could be derived depending on the Student tendency, program professional(teacher in charge, processing lecturer). The suicide prevention program presented in this article can be a help in learning and suicide prevention with consistent systematization, activation through emotion and impulse control based on emotional stress relief and positive self-identity recovery, stabilization of brain waves, and let the short period program not to be died out but to be continued connecting from childhood to adolescence capable to make surrounding environment for spiritual, physical healthy growth for which this could be an effective program for suicide prevention of the social problem.

Serum 25-Hydroxy Vitamin $D_3$ Analysis of Korean People (한국인 일반인의 혈청 25-Hydroxy Vitamin $D_3$의 분석)

  • Kim, Bo-Kyung;Jung, Hyun-Mi;Kim, Yun-Kyung;Kim, So-Young;Kim, Jee-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.133-137
    • /
    • 2010
  • Purpose: The main function of vitamin D is the mineralization of the brain by increase of calcium and phosphorus, in case it is insufficient in children, lime deposition on cartilage cannot occur so it leads to rachitis, and in adults, it leads to osteomalacia or osteoporosis. It is also strongly believed in the academic world that vitamin D can restrict the growth of cancer cells and prevent heart diseases, which is also somewhat proven in epidemiological researches. While the right density of vitamin D is still being studied, 20-32 ng/mL is believed to be the most ideal density. Therefore, I wanted analyze how much density of 25-Hydroxyvitamin D3 that Koreans possess. Materials and Methods: From February 20th, 2008 to April 21st, 2009, the collection of 2800 serums, from medical examination treated subjects by Neodin Medical Institute, have been tested. The targets were tested by 25-Hydroxyvitamin D (125I Kit: Diasorin, USA), and were analyzed by dividing into many different categories (gender, age, season, region). Results: The average density of male were 20 ng/mL, female 17.08 ng/mL. Per age groups, the density of males were as follows: 10~20-18 ng/mL, 21~30-17 ng/mL, 31~40-19 ng/mL, 41~50-21 ng/mL, 51~60-22 ng/mL, 61~70-22 ng/mL, 71~80-22 ng/mL and 81~90-19.9 ng/mL. Average density of females per age groups, were as follows: 10~20-16 ng/mL, 20~30-15.26 ng/mL, 30~40-16 ng/mL, 40~50-17 ng/mL, 50~60-19 ng/mL, 60~70-19 ng/mL, 70~80-19 ng/mL, and 80~90-17 ng/mL. Per seasons, From December to May, the subjects showed the density of 15.97 ng/mL, while from June to November, it showed 21.60 ng/mL. On density of males from January to April regionally, Seoul+Gyeonggi-Do-15.52 ng/mL, Gangwon-Do-15.33 ng/mL, Choongchung-Do-18.03 ng/mL, Jeonla-Do-18.68 ng/mL, Gyungsang-Do-18.76 ng/mL and Cheju Do-21.23 ng/mL. Conclusions: The vitamin D of Koreans is has been insufficient compared to the suggested amount. Ultraviolet rays, which is the main source of vitamin D is critical, therefore it is suggested that more outdoor activities can definitely help.

  • PDF

A Basic Study on Spatial Recognition through Poet in Soswaewon Garden (시문을 통해 본 소쇄원의 공간인식에 관한 기초연구)

  • Lee, Won-Ho;Kim, Dong-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.3
    • /
    • pp.38-49
    • /
    • 2015
  • This study aims to contemplated spatial recognition in Soswaewon Garden through garden visitors poetry. It was content analysis in poetry and extract frequency from words based on relationship of author. The results were as follows. First, relationship of authors who wrote Soswaewon Garden poetry was formed in companionship. In the Yang, San-Bo(梁山甫), poetry was written by Song, Soon(宋純), Kim, Un-Geo(金彦据) and Kim, In-Hu(金麟厚) as the central figure. Especially Kim, In-Hu was playing an important role in Soswaewon Garden poetry. He was wrote many of poetry and keep friends with Yang, Ja-Jeong(梁子渟) too. In the Yang, Ja-Jung, relationship of previous generation was sustained. In addition, Ko, Gyeong-Myeong(高敬命) and Kim, Seong-Won and Jeong, Chul(鄭澈) is more closely related than others. Because blood relationship by marriage. In the Yang, Jin-Tae(梁晋泰), He formed a relationship with a celebrity and attend to international activity. Since then Yang, Jin-Tae periord, Yang, Gyeong-Ji(梁敬之) and Yang, Chae-Ji(梁采之) formed relationship of previous generation was sustained. And surrounding people was written poetry as hold a banquet. Second, plant and ornament is a popular object for writing poetry. Bamboo grove and Fine tree with a high frequency of plant element in poetry. Bamboo grove is a typical species of trees in Soswaewon Garden. It was enclosed the Soswaewon Garden. Fine tree was often used target of poetry as a single tree. Meanwhile, ornament of the wall has been used most frequently. Descendants wrote a poem to see it because Kim, In-Hu's poetry was left. This phenomenon is involves respect for the ancient sages with high frequency. In addition, behavior of viewing the landscape was mainly appeared. Third, spatial recognition of Soswaewon Garden can be divided into landscape cognition, behavior cognition and emotional cognition. In a aspect of landscape cognition, early Soswaewon Garden was recognized as a pavilion. That was used garden name to 'Soswaewon Garden' since Yang, Ja-Jung's period. That is to say, Soswaewon Garden expanded from pavilion area surrounded by trees into the whole appearance is equipped garden area. Behavior cognition was consisting drink and enjoys a landscape. In the Yang, San-Bo, authors enjoyed drinking and viewing a landscape besides walking, writing poetry, viewing the moon. But after Yang, San-Bo's period other than drinking and enjoy a landscape has appeared a low frequency. These results were changed from internal place to blood relationship into external place to companionship. In the Yang, San-Bo's emotional cognition was sorrow and yearning about leave to Soswaewon Garden with an idly atmosphere. Pleasant emotion was sustained all generation. And emotion of respect for the ancient sages was appeared since Yang, Cheon-un.

Resolving the 'Gray sheep' Problem Using Social Network Analysis (SNA) in Collaborative Filtering (CF) Recommender Systems (소셜 네트워크 분석 기법을 활용한 협업필터링의 특이취향 사용자(Gray Sheep) 문제 해결)

  • Kim, Minsung;Im, Il
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used

    . Past studies to improve CF performance typically used additional information other than users' evaluations such as demographic data. Some studies applied SNA techniques as a new similarity metric. This study is novel in that it used SNA to separate dataset. This study shows that performance of CF can be improved, without any additional information, when SNA techniques are used as proposed. This study has several theoretical and practical implications. This study empirically shows that the characteristics of dataset can affect the performance of CF recommender systems. This helps researchers understand factors affecting performance of CF. This study also opens a door for future studies in the area of applying SNA to CF to analyze characteristics of dataset. In practice, this study provides guidelines to improve performance of CF recommender systems with a simple modification.

  • A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

    • Lee, Dongwon
      • Journal of Intelligence and Information Systems
      • /
      • v.26 no.2
      • /
      • pp.27-42
      • /
      • 2020
    • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

    A Study of the Reactive Movement Synchronization for Analysis of Group Flow (그룹 몰입도 판단을 위한 움직임 동기화 연구)

    • Ryu, Joon Mo;Park, Seung-Bo;Kim, Jae Kyeong
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.1
      • /
      • pp.79-94
      • /
      • 2013
    • Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point, ${\alpha}$and ${\beta}$. Dynamic State Synchronization was meaningful when the movement value was over critical point ${\beta}$, while Static State Synchronization was effective under critical point ${\alpha}$. ${\beta}$ is made by audience' clapping movement of 10 teams in stead of using average number of movement. After checking the reactive movement of audience, the percentage(%) ratio was calculated from the division of "people having reaction" by "total people". Total 37 teams were made in "2012 Seoul DMC Culture Open" and they involved the experiments. First, they followed induction to clap by staff. Second, basic scene for neutralize emotion of audience. Third, flow scene was displayed to audience. Forth, the reversal scene was introduced. And then 24 teams of them were provided with amuse and creepy scenes. And the other 10 teams were exposed with the sad scene. There were clapping and laughing action of audience on the amuse scene with shaking their head or hid with closing eyes. And also the sad or touching scene made them silent. If the results were over about 80%, the group could be judged as the synchronization and the flow were achieved. As a result, the audience showed similar reactions about similar stimulation at same time and place. Once we get an additional normalization and experiment, we can obtain find the flow factor through the synchronization on a much bigger group and this should be useful for planning contents.

    Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

    • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.1
      • /
      • pp.205-225
      • /
      • 2018
    • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

    Study of the Actual Condition and Satisfaction of Volunteer Activity in Australian Hospital (호주 일 지역의 병원 자원봉사활동 실태와 만족도)

    • Park, Geum-Ja;Choi, Hae-Young
      • Journal of Hospice and Palliative Care
      • /
      • v.9 no.1
      • /
      • pp.17-29
      • /
      • 2006
    • Purpose: This research aimed to investigate the actual condition and satisfaction of volunteer activity in Australian hospital. Methods: Data was collected by self reported questionnaire from 101 volunteers and analyzed by frequency and percentage, t-test, ANOVA and Sheffe and Pearson's correlation coefficients using SPSS 12.0. Results: 1. Years involved in volunteer work were $5{\sim}10$ years (32.7%), above 10 years (30.7%), $2{\sim}3$ years (11.9%) and $3{\sim}5$ years (10.9%). Types of volunteer work were physical care (32.7%), physical and emotional care (14.9%), and others (18.8%). Types of allocation of tasks were by volunteer coordination (55.7%), and by volunteer preference and consent between volunteer and coordinator (both respectively, 20.5%). Main reasons for volunteer work were to help sick people (61.4%) and to make good use of leisure time (22.8%). Routes to start volunteer work were from his (her) own inquiries (43.4%), from hearing from other volunteers (30.7%) and from mass media (13.1%). 80.2% of volunteers had received some kinds of training or preparation for volunteer work. Suitability of volunteer's skill and ability to voluntary work were 'very well' (74.0%) and 'mostly well' (18.0%). Reimbursements or benefits received for volunteer work were token or lunch or group outing (31.7%), and token and lunch or group outing (19.8%). Evaluation frequency for volunteer work was occasionally (372%), frequently (30.9%), always (17.0%) and never (14.9%). Relationship with volunteer work coordinator was very good (85.0%). The relationship with other volunteers was very good (81.2%). The relationship with hospital staffs was very good (69.7%) and mostly good (21.2%). Family and friend's support for volunteer work was very good (83.2%). 2 The mean score of satisfaction for the hospital volunteer activity was $3.09{\pm}0.49\;(range:\;1{\sim}4)$. The highest score domain was 'social contact', $3.48{\pm}0.61$, and the lowest was 'social exchange', $1.65{\pm}0.63$. An item of the highest score was 'I have an opportunity to help other people' ($3.83{\pm}0.40$), and the lowest score item was 'I will receive compensation for volunteer work I have done ($1.10{\pm}0.78$).' 3. The satisfaction from hospital volunteer activity was shown by significant difference according to sex (t=2.038, P=0.044), marital status (F=3.806, P=0.013), years involved in volunteer work (F=3.326), nam reason to do volunteer work (F=2.707, P=0.035), receive any training or preparation for volunteer work (t=-1.982, 0=0.050), frequency of evaluation for volunteer work (F=7.877, P=0.000), suitability of volunteer's skill and ability to voluntary work (t=2.712, P=0.049), relationship with volunteer work coordinators (F=-2.517, P=0.013), relation with hospital staffs (F=5.202, P=0.007), and support of their volunteer work by their family and friends (t=-3.394, P=0.001). Conclusion: The satisfaction of hospice volunteer activity was moderate. The satisfaction for hospice volunteer activity was shown by significant difference according to sex (t=2.038, P=0.044), marital status (F=3.806, P=0.013), years involved in volunteer work (F=3.326), main reason to do volunteer work (F=2.707, P=0.035), receive any training or preparation for volunteer work (t=-1.982, 0=0.050), frequency of evaluation for volunteer work (F=7.877, P=0.000), suitability of volunteer's skill and ability to voluntary work (t=2.712, P=0.049), relationship with volunteer work coordinator (F=-2.517, P=0.013), relation with hospital staffs (F=5.202, P=0.007), and family and friend's support for volunteer work (t=-3.394, P=0.001). Therefore, it is necessary to consider various factors to improve the satisfaction of voluntary work.

    • PDF

    Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

    • Thay, Setha;Ha, Inay;Jo, Geun-Sik
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.2
      • /
      • pp.1-20
      • /
      • 2013
    • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

    Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

    • Jeong, Ji-Song;Kim, Ho-Dong
      • Journal of Intelligence and Information Systems
      • /
      • v.27 no.2
      • /
      • pp.33-54
      • /
      • 2021
    • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.