• Title/Summary/Keyword: 수질 변화

Search Result 2,038, Processing Time 0.025 seconds

The Concentration and Input/Output of Nitrogen and Phosphorus in Paddy Fields (논에서의 질소 및 인의 농도와 유출입)

  • Shin, Dong-Seok;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 1990
  • For the purpose of evaluating nutrient loadings into rivers and lakes from agricultural land, especially from paddy fields and also nutrient degradation in drainage channels, the Total Kjeldahl Nitrogen(TKN) and the Total Phosphorus(TP) were investigated in 29.5 ha. paddy fields in Hwa-Sung, Kyong-Ki, Korea, during the period from May 8, 1989 to Sep. 27, 1989. The results of the study can be su㎜arized as follows : 1. Annual inputs into paddy fields were 180 N-kg/ha 46 P-kg/ha. by fertilization, and 15.0 TKN-kg/ha. 10.0 TP-kg/ha. by irrigation, 8.0 TKN-kg/ha. 0.34 TP-kg/ha. by rainfall respectively. The amount of nutrient involved in surface runoff from paddies was 39.0 TKN-kg/ha. 9.2 TP-kg/ha. and in seepage 7.5 TKN-kg/ha. 2.1 TP-kg/ha. respectively 2. In WS1 stream(reach length equals 950m), nutrients decreased 0.31 TKN-mg/L/km, 0.01 TP-mg/L/km and in WS2 stream (reach length equals 750m) which are more meandering and undulating than WS1, the nutrients decreased 0.84 TKN-mg/L/km, 0.11 TP-mg/L/km. From these results, it was concluded that low stream velocity due to meandering and undulation promotes more degradation of nutrient concentrations. 3. For the purpose of decreasing nutrient loads from paddy fields, the amount of fertilizer used needs to be controlled, irrigation weirs need to be constructed in the drainage channels to delay the transportation of nutrients by decelerating the stream velocity and plants such as plantain-lily need to be cultivated in the channel to consume nutrients and therefore enlarge chances of self-purification.

  • PDF

Physiological and Ecological Characteristics of the Apple Snails (왕우렁이 (apple snails)의 생리.생태적 특성에 관한 연구)

  • Lee, Sang-Beom;Koh, Mun-Hwan;Na, Young-Eun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.50-56
    • /
    • 2002
  • This experiment was carried out to obtain some information about overwintering, physiological and ecological characteristics of apple snails. Another purpose of this experiment was to characterize an appetite for rice plants by apple snails and to elucidate their choice of fresh green ones (vegetables, some other crops, weeds in rice fields). The freshwater snails were found with higher population at sites abundant organic compounds such as plant debris and at regions with high temperature. They also prefer calcium-rich water. This is a naturally occurring process. Apple snails were exceptionally veil-adapted to the south regions of Korea, especially Janghang, Jangseong and Haenam, even if the temperature of winter season is cold below 0$^{\circ}C$. Apple snails were not very selective in their food choice and eat almost everything available in their environment. A snail have something called a radula in its mouth for grinding up its food. A apple snail also chews on fruits and young succulent plant barks. In case of reproduction. apple snails deposit about 157$\sim$784 (average of 321 eggs) milky white to pale orange colored eggs above the waterline. In approximately every 22.4 seconds a new egg appears. The total time needed to deposit a egg mass varies from 58 minutes$\sim$4 hours 13 minutes. Apple snails reproduct actively from May to June and from September to October. An appetite of apple snails for rice plants was the different depending on their size and glowing stage for rice plants. Apple snails had a great appetite of rice plants as well as dropwort, tomato, cabbage, radish, aquatic plants etc. They preferred to eat young rice plants and drastically quit eating rice plants of over 40 cm in height. Thus considering the food preference of apple snail for various plants including rice, they were thought to be a potentially strong predator in fields, especially, at regions with warmer winter.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

Spatio-temporal Changes in Macrobenthic Community Structure and Benthic Environment at an Intensive Oyster Culturing Ground in Geoje-Hansan Bay, Korea (굴 양식장 밀집해역인 거제한산만의 저서동물군집 구조와 저서환경의 시.공간적 변동)

  • Yoon, Sang-Pil;Jung, Rae-Hong;Kim, Youn-Jung;Hong, Sok-Jin;Oh, Hyun-Taik;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.213-228
    • /
    • 2009
  • This study was conducted to investigate spatio-temporal changes in macrobenthic community structure and benthic environmental conditions in Geoje-Hansa Bay, which is the greatest oyster producing site in Korea. Field survey for benthic environment and macrobenthos was seasonally carried out at 15 stations covering oyster farming sites and non-farming sites from February to November, 2008. The grain size of surface sediments was dominated by very fine silt with the mean phi of about $9\;{\Phi}$ and TOC was 1.9% on average. Mean dissolved oxygen content was 8.1 mg/L and lowest in August corresponding to the 2nd degree in seawater quality criteria. Total species number was 351 and mean density was $3,675\;ind./m^2$, both of which were dominated by polychaete worms. Spatio-temporal variation in above two biological variables was great with higher values seasonally in spring and spatially in channels rather than inner bay. Dominant species were Lumbrineris longifolia (21.3%), Aphelochaeta monilaris (17.8%) and Ericthonius pugnax(6.1%), all of which are typical species of organically enriched area. From the multivariate analyses, the whole macrobenthic community was distinguished into two groups of channel and inner bay group. Spatio-temporal changes of macrobenthic community in Geoje-Hansan Bay were related to those of TOC and acid volatile sulfide (AVS). Our results showed that Geoje-Hansan Bay should be intermediately affected by organic pollution, and that such organic enrichment was more remarkable at farming stations in the inner bay.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Community Dynamics of Phytoplankton and Bacteria as Affected by Physicochemical Environmental factors in Hoeya Dam Reservoir (회야댐 저수지에서 물리 ${\cdot}$ 화학적 환경요인에 따른 식물플랑크톤과 세균 군집의 변화)

  • Kim, Dae-Kyun;Choi, Ae-Ran;Lee, Hye-Kyeong;Kwon, O-Seob;Kim, Jong-Seol
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.26-35
    • /
    • 2004
  • We investigated the effect of physicochemical environmental factors on the community dynamics of phytoplanktons and bacteria at the Hoeya Dam Reservoir, a drinking water reservoir for Ulsan city. Water samples were collected and analyzed every two to four weeks at three sites along the reservoir from April to October, 2001. During the study period, the Secchi depths were between 0.4 and 3.5 m. At the surface layer of water column, temperature ranged 10.2 ~ $32.0^{\circ}C$, pH 7.3${\sim}$9.6, dissolved oxygen 5.5 ${\sim}$ 12.4 mg $L^{-1}$, $BOD_5$ 0.8 ${\sim}$ 5.0 mg $L^{-1}$, $COD_{Mn}$ 3.7 ${\sim}$ 10.0 mg $L^{-1}$, and Chl-a 8.9 ${\sim}$ 60.9 mg $m^{-3}$. At the bottom layer, temperature varied 7.2 ${\sim}$ $28.9^{\circ}C$, pH 7.1 ${\sim}$ 9.3, dissolved oxygen 0.6 ${\sim}$ 9.7 mg $L^{-1}$, $BOD_5$ 0.8 ${\sim}$ 4.5 mg $L^{-1}$, $COD_{Mn}$ 3.9 ${\sim}$ 10.0 mg $L^{-1}$, and Chl-a 4.3 ${\sim}$ 81.9 mg $m^{-3}$. The numbers of phytoplanktons were 7.4${\pm}10^2{\sim}2.6{\pm}10^5$ cells $mL^{-1}$ at surface and 2.5${\pm}10^2{\sim}2.4{\pm}10^4$ cells $mL^{-1}$ at bottom, and were positively correlated with water temperature and Chl- a concentration. Genus Stephanodiscus and genus Oscillatoria dominated on April and on May, respectively. Cyanobacterial blooms of Aphanizomenon, Microcystis, Anabaena were observed from June to early September, and thereafter Stephanodiscus and Aulacoseiral dominated again. Total microbial counts ranged 1.73${\pm}10^4{\sim}1.68{\pm}10^5$ cells $mL^{-1}$, and were positively correlated with water temperature and phytoplankton counts at surface water. Heterotrophic plate counts (HPCs) ranged 30${\sim}4.1{\pm}10^3$ CFU $mL^{-1}$, and were positively correlated with $BOD_5$ and $NO^3\;^-$-N concentration at bottom water. Unlike the total microbial counts, the numbers of fecal coliforms and fecal streptococci as well as HPCs were higher at the bottom than the surface layer and were highest at the upper a site among the three sampling sites. Since the concentrations of fecal coliforms and streptococci were still high at the bottom of site c, where intake for water treatment plant is located, it appeared that special management of water treatment processes may be needed especially after strong rainfall.

The Study of Water Environment Variations in Lake Hwajinpo (화진포호의 수환경변화에 관한 연구)

  • Heo, Woo-Myung;Choi, Sang-Gyu;Kwak, Sung-Jin;Bhattrai, Bal Dev;Lee, Eun-Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.9-21
    • /
    • 2011
  • This study is conducted to know the change in water environment of Lake Hwajinpo from 2000 to 2008 with physico-chemical parameters; salinity, dissolved oxygen, total phosphorus and total nitrogen and others. And zooplanktons and phytoplanktons were studied from 2007 to 2008. From the water quality data of Lake Hwajinpo from 2000 to 200S; water temperature, salinity, transparency, chemical oxygen demand and dissolved oxygen ranges are $2.8{\sim}29.4^{\circ}C$, 0.23~33.2‰, $0.2{\sim}1.8\;m$, $0.2{\sim}20.2\;mg\;L^{-1}$ and $0.1{\sim}17.4\;mg\;L^{-1}$ and the average values are $18.0^{\circ}C$, 15.7‰, 0.7 m, $5.7\;mg\;L^{-1}$ and $8.0\;mg\;L^{-1}$, respectively. Total phosphorus (TP) and total nitrogen (TN) ranges are $0.024{\sim}0.869\;mg\;L^{-1}$ (average 0.091) and $0.240{\sim}5.310\;mg\;L^{-1}$ (average 1.235). Average TN/TP ratio is 16.4. The annual variations in COD, TP, TN and Chl.${\alpha}$ are compared. COD in 2000 is $4.83\;mg\;L^{-1}$ and 2008 is $1.80\;mg\;L^{-1}$ which is reduced by $0.34\;mg\;L^{-1}$ every year. TP in 2000 is $0.07\;mg\;L^{-1}$ and 2008 is $0.05\;mg\;L^{-1}$ reduced gradually. Yearly reduction in TN is $0.09\;mg\;L^{-1}$, in 2000 and 2008 the values are $1.54\;mg\;L^{-1}$ and $0.77\;mg\;L^{-1}$ respectivly. Chl.${\alpha}$ in 2000 is $46.30\;{\mu}g\;L^{-1}$ and $5.78\;{\mu}g\;L^{-1}$ in 2008; yearly reduction is $4.50\;{\mu}g\;L^{-1}$. The tropic state index (TSI) in south and north parts of Lake Hwajinpo in 2000 are 67 and 63 which are reduced to 63 and 59 in 2008 respectively. North and south part of Lake Hwajinpo have 67 species of phytoplankton under 47 families in 2007 and 2008. Dominant species in south part in 2007 are; Asterococcus superbus in May, Lyngbya sp. in September and Trachelomonas spp. in November and in 2008 Anabaena spiroides in August are abundant and varies with time. Zooplankton species in Lake Hwajinpo are 25 of 25 families. Dominant species in south part in May and August 2007 and May and November in 2008 Copepoda larvae and in September 2007 Protozoa spp. of Protozoan and Brachionus plicatilis and Brachionus urceolaris of Cladocera in August 2008. Dominant species in north part Asplanchna sp. of Cladecera in August and November 2007 and rest of the time are larvae of Copepoda. In this way, the water quality of Lake Hwajinpo is changing with slow rate in the long period specially nutrients concentration (TP, TN etc) is decreasing.