Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.9
/
pp.1146-1151
/
2019
Histogram H is an x-monotone rectilinear polygon with a horizontal edge, called by a base, connecting the leftmost vertical edge and the rightmost vertical edge. Here the rectilinear polygon is a polygon with only horizontal and vertical edges and the x- monotone polygon P is a polygon in which every line orthogonal to the x-axis intersects P at most twice. Walking counterclockwise on the boundary of a histogram H yields a sequence of left turns and right turns at its vertices. Conversely, a given sequence of the turns at the vertices can be realized by a histogram. In this paper, we consider the problem of finding a histogram to realize a given turn sequence. Particularly, we will find the histograms to minimize its area and its bounding box. It will be shown that both of the problems can be solved by linear time algorithms.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.28-31
/
2014
본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 히스토그램 매칭 및 선형 회귀분석 모델(linear regression model)을 활용한 강건한 차량 운행 동영상의 안정화(video stabilization) 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 적용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고(hand-held) 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델 기반의 안정화 기법을 제안한다. 제안된 기법은 입력영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전이동 변환을 선형 근사하여 시간 영역 상의 입력 영상에 대한 안정화를 달성한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 실제 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.
본 논문은 배경이 고정되지 않은 복잡한 동영상에서의 물체 추적을 위하여 다중 모델 색상 히스토그램 역투영(Multi Model Color Histogram Back-projection)방법을 제안한다. 색상 히스토그램 역투영(Color Histogram Back-projection)을 이용하면 카메라의 움직임 때문에 발생하는 배경의 변화에 관계없이 물체를 추적할 수 있다. 기존의 방법은 추적하려는 물체에 대해 하나의 모델만을 적용했기 때문에, 배경영역 색분포의 영향을 많이 받는다. 이를 해결하기 위해 다중 모델 색상 히스토그램 역투영 방법을 이용하였다. 이 방법은 추적하려는 물체에 대해 여러 개의 모델을 구하여 각각에 대해 색상 히스토그램 역투영을 수행한다 또한 역투영 이진 영상에서 물체의 위치를 결정하기 위한 수평, 수직 프로젝션 방법의 문제점을 레이블링(Labeling)을 사용하여 보완하였다.
영상 검색을 위한 기존의 칼라 히스토그램 방법은 영상의 형상 정보를 포함하고 있지 않다. 본 논문에서는 로컬 형상 정보인 에지 정보에 칼라 정보를 접목시켰다. 각각의 세 종류의 에지(수평 에지, 수직 에지, 비 방향성 에지) 주위의 픽셀들에 대한 칼라 분포를 구한 후 그 각각의 칼라 분포를 기초로 구한 두 영상간의 거리 정보를 이용하여 영상들간의 유사도를 구했다. 따라서 본 논문에서 제안한 유사도는 한 종류의 에지 타입 (비 방향성 에지)을 이용한 방법에 비해 매칭 오류를 줄일 수 있었다. 실험 결과, 제안된 방법이 기존의 칼라 히스토그램과 에지 히스토그램을 이용한 방법에 비해 향상된 성능을 보였다.
Journal of the Korea Society of Computer and Information
/
v.14
no.11
/
pp.179-186
/
2009
In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.
본 논문에서는 1m 공간해상도를 가지는 도시 지역의 위성영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트(gradient)의 히스토그램을 이용하여 스테레오 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 한 화소 거리의 대각 방향에 놓여진 4 개 화소들의 수직 및 수평 방향에 존재하는 화소간의 밝기값 차로 정의되는 그레디언트를 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 평탄화 지수 영상에서 에지 등과 같이 주변 화소의 밝기값과 차이가 큰 화소는 상대적으로 높은 평탄화 지수를,비에지 화소의 경우에는 낮은 평탄화 지수를 가지게 된다. 에지와 비에지를 판정하는 평탄화 임계값을 결정하기 위해 평탄화 지수 영상의 히스토그램 분포를 이용한다. 결정된 평탄화 임계값보다 작은 평탄화 지수를 가지는 정합 창틀 내의 화소들이 일정 비율보다 크면 비에지 화소로 판정하고 정합 창틀을 한 단계 더 크게 설정하는 방법으로 정합 창틀의 크기를 각 화소마다 가변적으로 변화시킨다. 제안한 방법을 IKONOS 스테레오 위성영상에 적용하여 고정 크기의 정합 창툴에 비해 정합 성능이 향상되는 것을 보였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.05a
/
pp.203-209
/
2002
본 논문에서는 영상 처리 및 인식 기술을 학생증 영상 인식에 적용하여 학생증 영상을 인식하고 웹 환경에서 학생 정보를 관리할 수 있는 방법을 제안한다. 원 학생증 영상에 대해서 가장 밝은 픽셀과 가장 어두운 픽셀에 대한 평균 밝기 값을 임계치로 설정하여 원 영상을 이진화하여 수평 방향으로 히스토그램을 수행하고 학번의 위치 정보를 이용하여 학번 영 역을 추출한다. 추출된 학번 영 역의 잡음을 제거하기 위하여 3$\times$3 마스크를 적용한 최빈수 평활화(smothing)를 수행하여 잡음을 제거하고 수직 방향 히스토그램을 이용하여 개별 문자를 추출하고 정규화 한다. 개별 학번 인식은 인공 신경망의 자율학습 방법인 ARTI 알고리즘을 적용하여 학번 문자를 인식한다. 실험 결과에서는 제안된 학생증 인식 방법이 학번 영역 추출과 개별 문자 인식에 효율적인 것을 보이고 인식된 개련 문자들을 데이터 베이스에 저장하여 웹환경에서 학생정보를 관리한다
The Transactions of the Korea Information Processing Society
/
v.5
no.9
/
pp.2294-2301
/
1998
The aim of this paper is to extract features from each news scenes for example, symbol icon which can be distinct each broadcasting corp, icon and caption which are has feature and important information for the scene in respectively, In this paper, we propose extraction methods of caption that has important prohlem of news videos and it can be classified in three steps, First of al!, we converted that input images from video frame to YIQ color vector in first stage. And then, we divide input image into regions in clear hy using equalized color histogram of input image, In last, we extracts caption using edge histogram based on vertical and horizontal line, We also propose the method which can extract news icon in selected key frames by the difference of inter-histogram and can divide each scene by the extracted icon. In this paper, we used comparison method of edge histogram instead of complex methcxls based on color histogram or wavelet or moving objects, so we shorten computation through using simpler algorithm. and we shown good result of feature's extraction.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.1
/
pp.91-99
/
2020
For the shadow removal technology that is the base technology of the image detection system, real-time image processing has a problem that the processing speed is reduced due to the calculation complexity and it is also sensitive to illumination or light because shadows are removed only by the difference in brightness. Therefore, in this paper, we improved real-time performance by reducing the calculation complexity through the removal of the weighting part in order to solve the problem of the conventional system. In addition, we designed and evaluated an image detection system based on a shadow removal algorithm that could improve the shadow recognition rate using a vertical histogram. The evaluation results confirmed that the average speed increased by approximately 5.6ms and the detection rate improved by approximately 5.5%p compared to the conventional image detection system.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.855-858
/
2004
본 논문에서는 원영상 영역내 포함된 우성의 에지에 대한 구체적 정보를 이용하기 위하여 Haar 웨이블릿을 이용한 에지영상 추출한다. 추출된 에지영상에 얼굴영역을 검출하기위해 이진화된 영상에 설정된 임계값을 통하여 얻은 이진영상으로부터 얼굴영역을 검출하기 위하여 얼굴의 일반적인 구조적 정보와 처리시간이 빠른 수평, 수직히스토그램 분석법을 이용하였다. 얼굴영역을 분리한 영상에 얼굴영역의 특징벡터를 구하기 위하여 26개의 특징벡터를 사용한 효율적인 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용하여 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.