• Title/Summary/Keyword: 수직 다관절 로봇

Search Result 34, Processing Time 0.037 seconds

Analysis of Aticulated Robot Manipulator to Reduce Body's Weight (경량화를 위한 수직 다관절로봇 매니퓰레이터의 해석)

  • 최원홍;김태기;이의훈;최만수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.575-581
    • /
    • 1993
  • This paper deals with analysis of articulated robot manipulator used for Arc welding and Material handling. Compared with present robot of which weight holding capacity is 6kg, this robot shows wider and symmetric working range for it's serial type mechanism. The link length is determined to have widest working range by using optimal simulation. To reduce body's weight, small AC servo motor is adopted and driving peak torque exerted at each joint is reduced by using dynamic analysis. So it is possible to reduce body's weight by 40% compared with the same class's robot and get wider working range. And by adopting modular design concept, each axis is designed to be changed easily for user's special need and repair.

  • PDF

Inverse kinematics analysis of 6R serial manipulator for the automation of 3D scanner measurement (3차원 스캐너의 측정 자동화를 위한 수직 다관절로봇의 역기구학 해석)

  • 육경환;한성준;양현석;장민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.929-934
    • /
    • 2004
  • As 3D scanner develops, it can be used in measurement. To accomplish complete 3D measurement, the scanner has to view different sides of the target. It can be done by moving the scanner and fix it at every measuring point. By human, it would take so much time. However, by using robot, measuring time can be reduced and the procedure can be automated. It is suitable for 6R serial manipulator to do this kind of work in which the scanner should go any position in arbitrary orientation. We did inverse kinematics analysis by analytical and graphical methods. Then, we compared two methods.

  • PDF

Lightweight Design of a Vertical Articulated Robot Using Topology Optimization (위상최적화를 이용한 수직 다관절 로봇의 경량 설계)

  • Hong, Seong Ki;Hong, Jung Ki;Kim, Tae Hyun;Park, Jin Kyun;Kim, Sang Hyun;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1683-1688
    • /
    • 2012
  • Topology optimization is applied for the lightweight design of three main parts of a vertical articulated robot: a base frame, a lower and a upper frame. Design domains for optimization are set as large solid regions that completely embrace the original parts, which are discretized by using three-dimensional solid elements. Design variables are parameterized one-to-one to the material properties of each element by using the SIMP method. The objective of optimization is set as the multi-objective form combining the natural frequencies and mean compliances of a structure for which load steps of interest are selected from the multibody dynamics analysis of a robot. The obtained results of topology optimization are post-processed to designs favorable to manufacturability for casting process. The final optimized results are 11.0% (base frame), 12.0% (lower frame) and 10.0% (upper frame) lighter with similar or even higher static and dynamic stiffnesses than the original models.

A Study on the Cooperative Kinematic Inter-operation of 2-Axis (Tilting/Rolling) Additional Axes with a 6-Axis Articulated Robot Using Simulink of MATLAB and Recurdyn (MATLAB과 Recurdyn의 Simulink를 활용한 2축 부가 축과 6축 수직 다관절로봇의 기구적 연동에 관한 연구)

  • Bae, Seung-Min;Chung, Won-Jee;Noh, Seong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-23
    • /
    • 2021
  • Currently, 6-axis articulated robots are used throughout the industry because of their 6-dof (degrees of freedom) and usability. However, 6-axis articulated robots have a fixed base and their movements are limited by the rotational operating range of each axis. If the angle of the 2-axis additional axes can be adjusted according to the position and orientation of the end-effector of the 6-axis articulated robot, the effectiveness of the 6-axis articulated robot can be further increased in areas where the angle is important, such as welding. Therefore, in this paper, we proposed a cooperative kinematic inter-operation strategy. The strategy will be verified using the Simulink of MATLABⓇ, an engineering program, and RecurdynⓇ, a dynamic simulation program.

Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space (수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계)

  • Lee J.S.;Kim S.H.;Yang H.S.;Park N.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.