• 제목/요약/키워드: 수직풍력터빈

검색결과 50건 처리시간 0.027초

풍력 발전 터빈 후류의 동적 분석 (Dynamic analysis of wind turbine wake)

  • 엄용한;김윤구;박성군
    • 한국가시화정보학회지
    • /
    • 제18권2호
    • /
    • pp.59-65
    • /
    • 2020
  • Vertical axis wind energy systems including 3 and 4 blades are numerically investigated in a two-dimensional (2D) computational domain. The power coefficient (Cp) is adopted to measure the efficiency of the system and the effect of the rotating velocity on the power coefficient is analyzed for the two different systems. The rotating velocity varies from 30 rad/s to 90 rad/s, which corresponds to the tip speed ratio (T.S.R) of 0.5 to 1.5. The torque exerted on the blades is mainly determined by the aerodynamic force in the x-direction and maximized when the blade is positioned at around θ = 186°. The efficiency of the 4-blade system is higher than that of the 3-blade system within the tip speed ratio range between 0.5 and 0.67, besides where the 3-blade system shows a better performance. For the 3-blade system, the maximum efficiency is reached to 0.082 at the tip speed ratio of 1.083. The maximum efficiency of the 4-blade system is 0.071 at T.S.R. = 0.92. The velocity fields in the x-direction, pressure fields, and the vorticity magnitude are analyzed in detail for the optimal cases of the 3- and 4-blades systems, respectively.

수치해석을 이용한 어선용 수직축 풍력터빈의 기초연구 (A Fundamental Study on the Vertical-Axis Wind Turbine for Fishing Boat using Numerical Analysis)

  • 정광열;이영길;하윤진;강봉한;강대선
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.365-372
    • /
    • 2013
  • In this study, the flow characteristics and structural safety of a 500W class vertical-axis wind turbines(VAWT) for a fishing boat are investigated by numerical simulations. Guide vanes to increase the performance of the VAWT are investigated. And the best guide vane in the numerical simulations is applied to the VAWT. Also, modal analyses are performed to find out the natural frequencies of the VAWT, and the resonance safety of the VAWT is evaluated. The structural analysis of the VAWT is carried out by one-way FSI(Fluid Structure Interaction). And the results are used for the evaluation of structural safety according to IEC 61400-1 code. Finally, the possibility of the installation of the VAWT on the wheelhouse of a 9.77ton class fishing boat is checked. The results of the present research could be used as one of the fundamental data to design a VAWT for a fishing boat.

이중 날개 형태의 소형 수직축 풍력터빈의 공기 역학적 특성 (Aerodynamic characteristics of a small vertical axis wind turbine with dual blade type)

  • 박병호;김종식;임종호;임종빈;이승호;이진현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.63.2-63.2
    • /
    • 2011
  • The objective of this study is to investigate the aerodynamic characteristics of a small vertical axis wind turbine with dual blade type. The Wind turbine with dual blade has various angle of attack. so this turbine improve starting characteristics. The various arrangement of the vertical axis wind turbine with dual blade is designed. Among them, it shows superior quality that is arranged in three rows. Among arrangement in three rows, we use general computational fluid dynamics program CFX to find out the optimal arrangement. By comparing the predicted results of the aerodynamic characteristics of the different arrangement of the blades, an appropriate arrangement of the blade is suggested to design the small wind turbine blade.

  • PDF

수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석 (Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle)

  • 박찬;박금성;박원규;윤순현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

수직형 풍력터빈 익형의 동특성 분석 (Study for Dynamic Stall Characteristics of Vertical Axis Wind Turbine Airfoil)

  • 김철완;조태환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.478-481
    • /
    • 2009
  • As a first step for aerodynamic analysis of vertical axis wind turbine, dynamic stall characteristics of airfoil was investigated. Dynamic stall of wind turbine airfoil is caused by severe variation of angle of attack and relative velocity of flow around airfoil. Angle of attack and relative velocity can be expressed with tip speed ratio. Variation of angle of attack is strongly dependent on the tip speed ratio. For tip speed ratio, 1.4 and free stream velocity, 15m/s, dynamic stall characteristics of wind turbine airfoil is compared with those of oscillating airfoil having same angle of attack variation.

  • PDF

안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석 (Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna)

  • 김성환;김익태
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

수직축 풍력터빈의 유동해석에 관한 연구 (A Study on Air Flow Analysis in Vertical-axis Wind Turbine)

  • 이기선;박정철
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.158-162
    • /
    • 2017
  • This paper did basic study on the vertical-axis wind turbine. Namely, This paper was try to find the optimum conditions by using the ANSYS CFX simulation program through the changes of the main-blade angle and sub-blade angle. Main-blade Shape #4 angle $45^{\circ}$ compared to others Shape angle $0^{\circ}$ was increased by 157.2[%] to 263.2[%] in the power output and was increased by 110[%] to 250[%] in the power coefficient. Also, when the Shape #5 Fin length of main-blade doubles, because the power output was 70.8[%] compared to Shape #1 and 27.5[%] compared to Shape #4, and the power coefficient was 60[%] compared to Shape #1 and 28.6[%] compared to Shape #4, the power output and the power efficiency were rather reduced. The output current of Shape #4 was increased 109.9[%] compared to Shape #1 and increased 250[%] compared to Shape #5, and The output voltage of Shape #4 was increased 22.5[%] compared to Shape #1 and increased 3.7[%] compared to Shape #4.

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

수직축 풍력 터빈 블레이드의 최적화 설계 및 Vortex 구조 분석 (Optimized blade of small vertical axis wind turbine and its vortex structure analysis)

  • 나지성;고승철;선상규;방유석;이준상
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.15-20
    • /
    • 2015
  • Sensitivity studies of blade angle and twisted angle are numerically investigated to optimize the Savonius blade. As blade angle increases, the contact area between blade and wind decreases, showing the suppression of the vortex generation near blade. Compared to the blade angle of 0 degree, the blade angle of 20 degree shows about 2.6% increment of power efficiency. Based on the blade angle of 20 degree, sensitivity studies of the twisted angle are performed. The result indicates that the adjustment of the twisted angle causes the torque of blade to increase. Optimized blade can suppress the formation of the vortex structure in rear region. Also, wind flows without disturbance of vortex when passing through the optimized blade. The 1kw vertical wind turbine system with optimized blade can generate 4442.2kWh per year and have 53% capacity factor.

수직축 풍력터빈에 관한 연구 (A Study of Vertical Axis Wind Turbine)

  • 박정철
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.389-395
    • /
    • 2017
  • 본 논문은 주 블레이드 각도와 보조 블레이드 각도를 변화 주어서 ANSYS 유동해석 시뮬레이션 프로그램을 이용하여 최적의 조건을 찾고자 하였다. $45^{\circ}$로 주 블레이드 각도를 변경한 Shape 4는 주 블레이드 각도를 $0^{\circ}$로 한 Shape들 보다 효율은 110% ~ 250% 증가하고, 출력은 157.2% ~ 263.2% 증가했다. 그리고 주 블레이드의 Fin 크기를 2배 크게 변경한 Shape 5의 출력은 Shape 4에 비해 27.5%, Shape 1에 비해 70.8% 증가하였다. Case 구조에서 주 블레이드 형상이 Shape 1로서 동일한 경우에는 Case 1은 Case 2보다 효율은 15.4%, 출력은 13.3% 증가하였다. 그리고 $45^{\circ}$로 보조 블레이드 각도를 한 경우, 주 블레이드 형상이 핀 형태보다 벤디드 형태가 우수하였다. Case 4는 Case 1보다 47%, Case 3보다 13.6% 출력이 증가하였고, 효율은 Case 1보다 46.7%, Case 3보다 15.8% 증가하였다.