• Title/Summary/Keyword: 수직침하

Search Result 115, Processing Time 0.036 seconds

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Consolidation Behavior of Vertical Drain in consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재의 압밀 거동)

  • Kim, Tae Woo;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.225-234
    • /
    • 1998
  • This study was compared the degree of consolidation by Hyperbolic, Curve fitting, Asaoka's, Monden's methods using measured value with theoretical curve in consideration of smear effect and well resistance. The results of the study were summarized as follows ; 1. The degree of consolidation by Hyperbolic method was underestimated than the degree of consolidation by Curve fitting, Asaoka's, and Monden's methods. 2. Typical range of horizontal coefficient of consolidation was $C_h=(2{\sim}3)C_v$ in the case considering smear effect and well resistance, and $C_h=(0.5{\sim}2.5)C_v$ in the case disregarding smear effect and well resistance. 3. The degree of consolidation obtained by ground settlement monitoring was nearly same value when the coefficient of permeability of smear zone by back analysis was shown the half that of in-situ and the diameter of smear zone was shown double that of mendrel. 4. Increasing of diameter reduction ratio of drain, the time of consoildation was delayed. The affection of well resistance the case of small coefficient of permeability was much more than that in the case of large coefficient of permeability. It was recommended that design of diameter reduction of drain consider smear effect and well resistance.

  • PDF

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

Finite Element Analysis on the Ground Behavior for Tunnel with Pipe-roof (파이프루프공법이 적용된 터널의 지반거동 유한요소 해석)

  • Jo, Seon-Ah;Jin, Kyu-Nam;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.261-269
    • /
    • 2016
  • Pipe-roof method is one of the mostly used method to prevent the ground subsidence during the tunnel construction. As pipe-roof method has made technical advancement and performance improvement, it suggested to utilize pipe-roof to a permanent support system rather than a temporal pre-reinforcing method. Therefore, in this study, pipe-roof method is numerically simulated using finite element method to evaluate effects of pipe-roof on behavior of ground and structure. Analyses are performed considering two major conditions that are with and without the application of pipe-roof and the shape of tunnel cross section. The results are presented with respect to variation of settlement and vertical stress distribution. Based on this results, it is found that ground settlement above the shallow tunnel can be considerably reduced by application of pipe-roof system. Also, the shape of tunnel cross section can influence on the mechanical behavior of ground and structure.

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

Performance Evaluation for Deteriorated Masonry in Military Facilities (조적조 노후 군시설의 성능 평가)

  • Yang Eun-Bum;Shin kyoung-Hee;Hwang Jong-Hyun;Kim In-Ho;Kim Yong-In;Park Tae-keun;Lee Chan Shik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.434-438
    • /
    • 2001
  • Military facilities with masonry construction have a great portion in the whole military facilities. But lots of them have been used for more than 20 years, the degree of deterioration of the facilities are very serious. Futhermore, as small budget for the facilities maintenance and poor maintenance, the performance of the aged masonry facilities have continually decreased. We suggest a structural performance assesment criteria for the military facility through literature review, interview with experts and questionnaire. The assesment of structural performance includes the inclining and sinking degree of the facilities, durability of materials and resisting force of the structural members.

  • PDF

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF

Agricultural Geophysics in South Korea: Case Histories and Future Advancements (우리나라 농업 물리탐사: 적용 사례와 향후 과제)

  • Song, Sung-Ho;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.244-254
    • /
    • 2018
  • The first geophysical technique applied to the agricultural sector in Korea was electrical resistivity sounding and conducted in purpose of groundwater exploitation in the 1970s. According to the diversity of agricultural activities since the 1990s, various geophysical methods including electrical resistivity, electromagnetic induction, and self-potential method were applied to several agricultural fields such as soil characterization with saline concentration in vast reclaimed area, delineation of seawater intrusion regions in costal aquifer, safety inspection of embankment dikes with leakage problem, detection of ground subsidence from overpumping and tracing of groundwater aquifer contamination by leachate from livestock mortality burial or waste burial site. This paper introduces representative geophysical techniques that have been utilized in various agricultural fields and suggests several ways to develop the geophysical methods required for the precision agriculture field in the near future based on the past achievements.

Multimetric Measurement Data Monitoring System Using Sigmoid Function (시그모이드 함수를 이용한 다중 계측데이터 모니터링 시스템)

  • Jeong-Ho Song;Jun-Woo Shin;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.137-149
    • /
    • 2023
  • In order to intuitively grasp the earth pressure direction acting on the structure and displacement state, displacement data in the horizontal and vertical directions were processed using the sigmoid function. A displacement coordinate system was set up for each axis. The system can intuitively check the current displacement and assess the management stage of each point. A displacement path can be compiled from continuously recorded points, allowing trends in the displacement's history and stress direction to be known. Analysis of data measured for excavated ground, found that displacement occurred in the direction of destressing at all points, and that the points' management state steady. Similar behavior trends were found among measurement points with high spatial correlation, whereas differing behavior trends occurred among measurement points with low spatial correlation. If the correlation analysis of the precursor and behavior area is performed using the continuously distributed surface settlement data and displacement coordinate system, it will be possible to predict the failure time and area.