• Title/Summary/Keyword: 수직채널

Search Result 142, Processing Time 0.025 seconds

Resolution of Shallow Marine Subsuface Structure Image Associated with Acquisition Parameters of High-resolution Multi-channel Seismic Data (고해상 다중채널 탄성파탐사 자료취득변수에 따른 천부 해저지층영상의 해상도)

  • Lee Ho-Young;Koo Nam-Hyung;Park Keun-Pil;Yoo Dong-Geun;Kang Dong-Hyo;Kim Young-Gun;Seo Gab-Seok;Hwang Kyu-Duk;Kim Jong-Chon;Kim Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • High-resolution shallow marine seismic surveys have been carried out for the resources exploration, engineering applications and Quaternary mapping. To improve the resolution of subsurface structure image, multichannel digital technique has been applied. The quality of the image depends on the vertical and horizontal resolution and signal to noise (S/N) ratio which are associated with the data acquisition parameters such as sample interval, common midpoint (CMP) interval and CMP fold. To understand the effect of the acquisition parameters, a test survey was carried out off Yeosu and the acquired data were analyzed. A 30 $in^3$ small air gun was used as a seismic source and 8 channel streamer cable with a 5 m group interval was used as a receiver. The data were digitally recorded with a shot interval of 2 s and sample interval of 0.1 ms. The acquired data were resampled with various sample intervals, CMP intervals and CMP folds. The resampled data were processed, plotted as seismic sections and compared each other. The analysis results show that thin bed structure with ${\~}1m$ thickness and ${\~}6^{\circ}$ slope can be imaged with good resolution and continuity and low noise using the acquisition parameters with a sample interval shorter than 0.2 ms, CMP interval shorter than 2.5 m and CMP fold more than 4. Because seismic resolution is associated with the acquisition parameters, the quality of the subsurface structure can be imaged successfully using suitable and optimum acquisition parameters.

Seismic Imaging of a Tidal Flat: A Case Study for the Mineopo Area (조간대(갯벌)에서의 탄성파 탐사: 민어포 지역의 사례)

  • Jou, Hyeong-Tae;Kim, Han-Joon;Lee, Gwang-Hoon;Lee, Sang-Hoon;Jung, Baek-Hoon;Cho, Hyun-Moo;Jang, Nam-Do
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal flat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections from the study area show significantly higher resolution and signal to noise ratio than conventional land seismic sections. The tidal flat consists of 5 sedimentary sequences above acoustic basement. The seismic sections reveal the continuous structure of the tidal flat formed in association with sea level rise during the Holocene.

Helicopter-borne and ground-towed radar surveys of the Fourcade Glacier on King George Island, Antarctica (남극 킹조지섬 포케이드 빙하의 헬리콥터 및 지상 레이다 탐사)

  • Kim, K.Y.;Lee, J.;Hong, M.H.;Hong, J.K.;Shon, H.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • To determine subglacial topography and internal features of the Fourcade Glacier on King George Island in Antarctica, helicopter-borne and ground-towed ground-penetrating radar (GPR) data were recorded along four profiles in November 2006. Signature deconvolution, f-k migration velocity analysis, and finite-difference depth migration applied to the mixed-phase, single-channel, ground-towed data, were effective in increasing vertical resolution, obtaining the velocity function, and yielding clear depth images, respectively. For the helicopter-borne GPR, migration velocities were obtained as root-mean-squared velocities in a two-layer model of air and ice. The radar sections show rugged subglacial topography, englacial sliding surfaces, and localised scattering noise. The maximum depth to the basement is over 79m in the subglacial valley adjacent to the south-eastern slope of the divide ridge between Fourcade and Moczydlowski Glaciers. In the ground-towed profile, we interpret a complicated conduit above possible basal water and other isolated cavities, which are a few metres wide. Near the terminus, the GPR profiles image sliding surfaces, fractures, and faults that will contribute to the tidewater calving mechanism forming icebergs in Potter Cove.

Fast Matching Pursuit based on Vector Length Comparison (벡터길이 비교를 이용한 고속 Matching Pursuit)

  • O, Seok-Byeong;Jeon, Byeong-U
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2001
  • Matching pursuit algorithm was successfully demonstrated useful in low bit-rate video coding, However, one of the practical concerns related to applying the matching pursuit algorithm to application is its massive computation required for finding bases whose weighted sum best approximates the given input image. The main contribution of this paper is that we provide a new method that can drastically reduce the computational load without any degradation of image quality. Its main idea is based on reducing the number of inner product calculation required for finding best bases because the complexity of matching pursuit algorithm is due to the exhaustive local inner product calculation. As the first step, we compute a matrix which is the 1-D inner product of the given motion-compensated error input image with the 1-D vertical Gabor functions using the separable property of Gabor bases. In the second step, we calculate length of each vector in the matrix that corresponds to 1-D horizontal Gabor function, and compare the length with the current maximum absolute inner product value so far. According to the result of this comparison, one can decide whether or not to calculate the inner product. Since most of them do not need to calculate the inner product value, one can significantly reduce the computational load. Experimental results show that proposed method reduces about 70% of inner product calculation compared to the Neff's fast algorithm without any degradation of image quality.

  • PDF

A Reputation based Cooperative Routing Scheme for End-to-End Reliable Communications in Multi-hop Wireless Networks (다중 홉 무선 네트워크에서 종단 간 신뢰성 통신을 위한 평판 기반의 협력적 라우팅 기법)

  • Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1593-1608
    • /
    • 2009
  • If a certain relay node in multi-hop wireless networks might become a malicious node that does not cooperate with other nodes or a selfish node, network throughput will be dramatically decreased. Most of existing ad hoc routing protocols assuming that the nodes will fully cooperate with other nodes do not resolve the problem of network performance degradation due to malicious and selfish nodes. This paper presents the CARE (Cooperative Ad hoc routing protocol based REputation) scheme incorporating the reputation management that can achieve a multi-hop wireless network with high throughput performance. The proposed scheme provides the horizontal cross-layer approach which can identify misbehaving malicious, selfish nodes dropped out of the hop-by-hop based packet processing in the network and then set up an optimal packet routing path that will detour misbehaving nodes. And the vertical cross-layer approach contained in the CARE scheme attempts to improve the quality of routing paths by exploiting the quality of link information received from the MAC layer. Besides, it provides high TCP throughput by exploiting the reputation values of nodes acquired from the network layer into the transport layer. A case study on experiments and simulations shows that the CARE scheme incorporating vertical and horizontal cross-layer approaches yields better performance in terms of the low rate of packet loss, fast average packet delivery time, and high TCP throughput between end-to-end nodes.

  • PDF

Comparison Analysis of Soil Structure Methods for Deciding the Position of a Deeply Driven Ground Rod (심매설 접지봉의 위치결정을 위한 대지구조 분석 방법들의 비교분석)

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.37-45
    • /
    • 2007
  • Recently, there has been an increase of the use of ground system for lightning protection called deeply driven grounding electrode. In the case of deeply driven grounding electrode, the rod electrode is equipped perpendicularly and deeply, therefore, it has a benefit to have less restriction of place compared to mesh grid electrode. However, ground impedance is largely changed by the local earth resistivity, so it requires a detailed analysis of the ground structure when planning. The measurement of earth resistivity by existing Wenner's method has been widely used, however, this method can not find out a change in the local ground resistance and it shows the result outwardly to be difficult to estimate exact depth. Therefore, this study analyzed the ground structure as 2-D image using 96 channels measurement facility and tried to analyze change in the local ground resistance and depth of the ground in order to design a deeply driven electrode effectively for lightning protection. It used Wenner alpha method dipole-dipole method and Schlumberger method for 2-D image analysis of the ground resistivity ma based on, it the result was compared with the ground structure analyzed with the result using the CDEGS and Wenner 1-D method.

A STUDY FOR THE DETERMINATION OF KOMPSAT I CROSSING TIME OVER KOREA (I): EXAMINATION OF SOLAR AND ATMOSPHERIC VARIABLES (다목적 실용위성 1호의 한반도 통과시각 결정을 위한 연구 (I): 태양 및 대기 변수 조사)

  • 권태영;이성훈;오성남;이동한
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.330-346
    • /
    • 1997
  • Korea Multi-Purpose Satellite I (KOMPSAT-I, the first multi-purpose Korean satellite) will be launched in the third quarter of 1999, which is operated on the sun-synchronous orbit for cartography, ocean color monitoring, and space environment monitoring. The main mission of Electro-Optical Camera(EOC) which is one of KOMPSAT-I sensors is to provide images for the production of scale maps of Korea. EOC collects panchromatic imagery with the ground sample distance of 6.6m at nadir through visible spectral band of 510~730nm. For determining KOMPSAT-I crossing time over Korea, this study examines the diurnal variation of solar and atmospheric variables that can exert a great influence on the EOC imagery. The results are as follows: 1) After 10:30 a.m. at the winter solstice, solar zenith angle is less than $70^{\circ}$ and expected flux of EOC spectral band over land for clear sky is greater than about $2.4mW/cm^2$. 2) For daytime the distribution of cloud cover (clear sky) shows minimum (maximum) at about 11:00 a.m. Although the occurrence frequency of poor visibility by fog decreases from early morning toward noon, its effect on the distribution of clear sky is negligible. From the above examination it is concluded that determining KOMPSAT-I crossing time over Korea between 10:30 and 11:30 a.m. is adequate.

  • PDF

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Seismic reflection survey in a tidal flat: A case study for the Mineopo area (갯벌 지역에서의 탄성파 탐사: 민어포 조간대 지역의 사례)

  • Jou Hyeong-Tae;Kim Han-Joon;Lee Gwang-Hoon;Choi Dong-Lim;Kim Min-Ji;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.67-84
    • /
    • 2002
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal (fat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections were created that are high in resolution and signal to noise ratio as well. The stack sections show that the tidal flat consists of 5 sedimentary sequences above acoustic basement. Although deposition is largely characterized by the transgressive sedimentary facies resulting from sea level rise, erosional surfaces are well-resolved within the sequences.

  • PDF

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.