• Title/Summary/Keyword: 수직조건

Search Result 1,165, Processing Time 0.027 seconds

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

The Image Distortion Analysis of Levin-tube tip by Patient position and Incidence Angle when taking Mobile Chest AP Projection (Mobile Chest AP 검사 시 환자자세와 입사각도에 따른 Levin-tube tip의 영상왜곡 분석)

  • Lee, Jinsoo;Park, Hyonghu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.467-471
    • /
    • 2015
  • This study's purpose is improve image quality to keep accurate tube angle in order to recognize distortion degree conditions by patient's position or tube angle and to provide exact clinical informations when taking chest AP projection for patient which have L-tube in stomach. The experimental equipment was ELMO-T6S by SHIMADZU corporation, then we put L-tube which attached 1 mm gap scales ruler on chest phantom surface. The experiment set by 90 kVp, 4 mAs, 120 cm distance. Each phantom position which changed supine, 30degree, 45degree, 60degree on the table exposured direct, ${\pm}5degree$, ${\pm}10degree$, ${\pm}15degree$ to head and feet directions. As a result, L-tube tip's position was changed by patient's position and tube angle. When patient's position is supine, tip's position change was lower than 30degree, 45degree, 60degree. We have to adjust patient's position or tube angle in order to occur image distortion by fault tube angle when confirming correct position L-tube tip through chest x-ray. Also, Radiological technologist try to make accurate evaluation index for satisfied L-tube insertion.

Performance Estimation of Semi-active Real-time Feedback Vibration Control System (준능동형 실시간 Feedback 진동제어시스템의 성능평가)

  • Heo, Gwang Hee;Jeon, Joon Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • This paper is concerned to constitute a semi-active realtime feedback vibration control system and evaluate it through experiments in order to control in realtime the vibration externally generated, specially on the bridges which is structurally flexible. For the experiment of vibration control, we built a model bridge structure of Seohae Grand Bridge in a 1/200 reduced form and inflicted El-centro wave on the model structure also in a reduced force considering the lab condition. The externally excited vibration was to be controled by placing a shear type MR damper vertically on the center of bridge span, and the response (displacement and acceleration) of structure was to be acquired by placing LVDT and Accelerometer at the same time. As for the experiment concerning controlling vibration, a realtime feedback vibration control experiments were performed under each different condition largely such as un-control, passive on/off control, Lyapunov stability theory control, and Clipped-optimal control. Its control performance under different condition was quantitatively evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the power required for control on the center of span. The results of experiments proved that the Lyapunov control and clipped-iptimal control were effective to decrease the displacement and acceleration of the structure, and also to decrease the power consumption to a great extent. Finally, the semi-active realtime feedback vibration control system constituted in this research was proven to be an effective way to control and manage the vibration generated on bridge structure.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Dynamics of the River Plume (하천수 플룸 퍼짐의 동력학적 연구)

  • Yu, Hong-Sun;Lee, Jun;Shin, Jang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.413-420
    • /
    • 1994
  • Dynamics of the river plume is a very complicated non-linear problem with the free boundary changing in time and space. Mixing with the ambient water through the boundary makes the problem more complicated. In this paper we reduced 3-dimensional problem into 1-dimensional one by using the integral analysis method. Basic equations have been integrated over the lateral and vertical variations. For these integrations we adopted the well-established assumption that the flow-axis component of plume velocity and the density difference of the plume with the ambient water have Gaussian distributions in directions which are perpendicular to the flow-axis of the plume. We also used the result of our previous study on the lateral spreading velocity of the plume derived under the same assumption. And entrainment was included as a mixing process. The resultant 1-dimensional equations were solved by Runge-Kutta numerical method. Consequently, comparatively easy method of numerical analysis is presented for the 3-dimensional river plume. The method can also be used for the analysis of the thermal plume of cooling water of power plants.

  • PDF

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

A Property Analysis on Spatial Distribution of Sea Water Temperature Difference for Site Selection of Ocean Thermal Energy Conversion Plant (해양온도차 발전소의 입지선정을 위한 해수 온도차의 공간적 분포특성 분석)

  • 서영상;장이현;조명희
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.567-575
    • /
    • 1999
  • This study found potential ability to generate electric power using difference in water temperature between sea surface water and deep water in the East Sea which includes the East Sea Proper Water with the temperature less than 1$^{\circ}C$ throughout a year without seasonal variation. To quantify the difference in water temperature between sea surface water and deep water in the East Sea. We computed the annual mean ($^{\circ}C$), the annual amplitude ($^{\circ}C$), the annual phase (degree) and the duration time which showed more than 15$^{\circ}C$ temperature difference from the water temperature data using Harmonic analysis during 1961~1997. The best place for generating electric power in the East Sea seems to be the eastward ocean areas (36$^{\circ}$ 05'N, 129$^{\circ}$ 48'E~36$^{\circ}$ 05'N, 130$^{\circ}$ 00E'E) from Pohang city. The annual mean of the difference in water temperature between sea surface water and 500 m depth was 24$^{\circ}$C at the place to generate electric power in August according to the data of 1961~1997. the maximum duration periods with more than 15$^{\circ}C$ temperature difference were 215 days (5/5-12/10) a year in the place mentioned electricity with a stable plan. In the East Sea coastal areas of the Korean peninsula, the average minimum depth to reach the East Sea Proper Water from surface water is 300 m and fluctuates between 250 m and 350 m throughout a year. Further studies could be needed for the utilization of cold water, such as the East Sea Proper Water for energy conversion.

  • PDF

Experimental Performance Evaluation on V-shaped Butt Welding Using GMA Welding Double Wire Reel and Remote Control Torch Welding Technique (GMAW 더블 와이어 릴, 원격제어토치 용접기술을 이용한 V형 맞대기 용접 부의 실험적 성능 평가)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1339-1347
    • /
    • 2015
  • This study discusses a remote control torch system equipped with a GMAW double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel, such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is burned out completely. Such work suspension resulting from frequent moves to adjust the current and voltage as well as to replace the wire and subsequent cooling causes welding defects. This study produced a remote control torch equipped with a double wire reel by simplifying and streamlining the existing GMAW functions to reduce the troubling issue. The remote control torch equipped with a double wire reel and the existing $CO_2$ /MAG welding torch were applied as a V-groove butt in the vertical position using 6mm rolled steel for a SM50A welding structure. After welding, the condition of welded surface beads underwent a visual inspection and radiographic inspection to analyze the welding quality inside the welded part. This study also evaluated the reduction of welding defects, cost saving, the replacing performance against the existing commercial welders, and the effects on possible compatibility.

Dry Etching of Polysilicon by the RF Power and HBr Gas Changing in ICP Poly Etcher (ICP Poly Etcher를 이용한 RF Power와 HBr Gas의 변화에 따른 Polysilicon의 건식식각)

  • Nam, S.H.;Hyun, J.S.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.630-636
    • /
    • 2006
  • Scale down of semiconductor gate pattern will make progress centrally line width into transistor according to the high integration and high density of flash memory semiconductor. Recently, the many researchers are in the process of developing research for using the ONO(oxide-nitride-oxide) technology for the gate pattern give body to line breadth of less 100 nm. Therefore, etch rate and etch profile of the line width detail of less 100 nm affect important factor in a semiconductor process. In case of increasing of the platen power up to 50 W at the ICP etcher, etch rate and PR selectivity showed good result when the platen power of ICP etcher has 100 W. Also, in case of changing of HBr gas flux at the platen power of 100 W, etch rate was decreasing and PR selectivity is increasing. We founded terms that have etch rate 320 nm/min, PR selectivity 3.5:1 and etch slope have vertical in the case of giving the platen power 100 W and HBr gas 35 sccm at the ICP etcher. Also notch was not formed.