• Title/Summary/Keyword: 수직강성

Search Result 336, Processing Time 0.022 seconds

Study on the Community Structure of Meiofauna in Marian Cove, King George Island, Antarctica (남극 King George Islands, Marian Cove의 중형저서생물 군집 구조에 관한 연구)

  • Bang Hyun Woo;Kang Sung-Ho;Lee Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.191-199
    • /
    • 2005
  • The community structure, vertical distribution and harpacticoids composition of the meiofauna community were observed from five stations in Marian Cove, King George Island and one station on the northeastern side of Nelson Island. Sample was taken by a free-fall corer in December 2002. Generally, 11 taxa of meiofauna were found, and meiofauna abundance ranged from 322 to 1575 indiv. $10cm^{-2}$ (mean 781 indiv. $10cm^{-2}$). Nematodes were the most dominant group, making up $89\%$ of total meiofauna, followed by harpacticoids $(6.8\%)$. Benthic harpacticoids appeared 19 species of nine families at all the stations, and most various taxa appeared at station B (13 species of seven families). For vertical distribution, more than $70\%$ of meiofauna was concentrated in the upper $0\~2cm$ sediment layers, and the density abruptly decreased with depth in all the stations. Total biomass of meiofauna varied between 41 and $360{\mu}gC\;10cm^{-2}$, and overall mean biomass was $205{\mu}gC\;10cm^{-2}$. Also nematodes had the highest percentage of total maiofauna biomass $(62.4\%)$. The analysis results of Canonical Correspondence Analysis between meiofauna community and sediment grain size showed that polychaets, oligochaets and cumaceans were influenced by silt&cray, and sand, granule and pebble had a influence on harpacticoids, kinorhynchs and ostracods respectively. But nematodes were not affected by sediment grain size.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

The Summer Distribution of Picophytoplankton in the Western Pacific (하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구)

  • Noh Jae-Hoon;Yoo Sin-Jae;Kang Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.67-80
    • /
    • 2006
  • The effect of environmental forcing on picophytoplankton distribution pattern was investigated in the tropical and subtropical western Pacific (TSWP) and the East Sea in September, 2002, and the continental shelf of the East China Sea (C-ECS) in August, 2003. The abundance of picophytoplankton populations, Synechococcus, Prochlorococcus and picoeukaryotes were determined by flow cytometry analyses. Picophytoplankton vertical profiles and integrated abundance $(0\sim100\;m)$ were compared with these three physiochemically different regions. Variation patterns of integrated cell abundance of Synechococcus and Prochlorococcus in these three regions showed contrasting results. Synechococcus showed average abundance of $84.5X10^{10}\;cells\;m^{-2}$, in the TSWP, $305.6X10^{10}\;cells\;m^{-2}$ in the C-ECS, and $125.4X10^{10}\;cells\; m^{-2}$ in the East Sea where increasing cell concentrations were observed in the region with abundant nutrient. On the other hand, Prochlorococcus showed average abundance of $504.5X10^{10}\;cells\;m^{-2}$ in the TSWP, $33.2x10^{10}\;cells\;m^{-2}$ in the C-ECS, and $130.2X10^{10}\;cells\;m^{-2}$ in the East Sea exhibiting a distinctive pattern of increasing cell abundance in oligotrophic warm water. Although picoeukaryotes showed a similar pattern to Synechococcus, the abundance was 1/10 of Synechococcus. Synechococcus and picoeukaryotes showed ubiquitous distribution whereas Prochlorococcus generally did not appear in the C-ECS and the East Sea with low salinity environment. The average depth profiles for Synechococcus and Prochlorococcus displayed uniform abundance in the surface mixed layer with a rapid decrease below the surface mixed layer. for Prochlorococcus, a similar rapid decreasing trend was not observed below the surface mixed layer of the TSWP, but Prochlorococcus continued to show high cell abundance even down to 100 m depth. Picoeukaryotes showed uniform abundance along $0\sim100\;m$ depth in the C-ECS, and abundance maximum layer appeared in the East Sea at $20\sim30\;m$ depth.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

A Dynamic Behavior Evaluation of the Curved Rail according to Lateral Spring Stiffness of Track System (궤도시스템의 횡탄성에 따른 곡선부 레일의 동적거동평가)

  • Kim, Bag-Jin;Choi, Jung-Youl;Chun, Dae-Sung;Eom, Mac;Kang, Yun-Suk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.517-528
    • /
    • 2007
  • Domestic or international existing researches regarding rail damage factors are focused on laying, vehicle conditions, driving speed and driving habits and overlook characteristics of track structure (elasticity, maintenance etc). Also in ballast track, as there is no special lateral spring stiffness of track also called as ballast lateral resistance in concrete track, generally, existing study shows concrete track has 2 time shorter life cycle for rail replacement than ballast track due to abrasion. As a result of domestic concrete track design and operation performance review, concrete track elasticity is lower than track elasticity of ballast track resulting higher damage on rail and tracks. Generally, concrete track has advantage in track elasticity adjustment than ballast track and in case of Europe, in concrete track design, it is recommended to have same or higher performance range of vertical elastic stiffness of ballast track but domestically or internationally review on lateral spring stiffness of track is very minimal. Therefore, through analysis of service line track on site measurement and analysis on performance of maintenance, in this research, dynamic characteristic behaviors of commonly used ballast and concrete track are studied to infer elasticity of service line track and experimentally prove effects of track lateral spring stiffness that influence curved rail damage as well as correlation between track elasticity by track system and rail damage to propose importance of appropriate elastic stiffness level for concrete and ballast track.

  • PDF

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF