• Title/Summary/Keyword: 수지온도

Search Result 765, Processing Time 0.026 seconds

CAE Analysis on the Radius Curvature of Ununiformed wall-thickness Jar (불균일 측벽두께 Jar의 곡률반경에 따른 CAE 해석)

  • Shin, Nam-Ho;Choi, Seok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1040-1046
    • /
    • 2006
  • This paper is aimed to investigate the deformation caused by ununiform contraction of injection molding with highly big differences of thickness by the continuity of various curvature radius. By CAE analysis, the uniform cooling structure and optimum molding conditions are found for Jars made of SAN and PMMA materials and applied to the design of chill. In order toevaluate the molding pressure, resin temperature, molding temperature, cooling conditions, Moldflow program is applied. As results of experiments, the deformation and inferiority phenomena in Jars are analyzed for each factor and proposed the injection molding conditions to minimize the cooling structure and reduce the cycle time.

  • PDF

Degradation Assessment of Thermoplastic Synthetic Resin Using Propagation Characteristics of Ultrasound (초음파 전파특성을 이용한 열가소성 합성수지의 열화 평가)

  • Jeon, Woo-Sang;Kim, Gi-Jin;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2014
  • A nondestructive ultrasonic technique was applied to evaluate the thermal characteristics and degradation of synthetic polymer resin (plastics) with better cost-effectiveness and functionality than glass and metal. Thermoplastic and transparent acrylic resin (PMMA) specimens were annealed at below the glass transition temperature ($T_g$), and the propagation characteristics (attenuation and velocity) were measured. The attenuation increased and the velocity decreased with thermal degradation. The results showed that the thermal aging of the specimens could be evaluated quantitatively and that the Tg could be evaluated qualitatively.

Effect of Impregnation Ratio and Carbonizing Temperature on Surface Temperature of Woodceramics Made from Thinned Logs of Pinus densiflora S. et. Z. (함침율 및 소성온도가 소나무 간벌재로 제조된 우드세라믹의 표면온도에 미치는 영향)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • The change in surface temperature of woodceramics, made from thinned logs of Pinus densiflora, were investigated, by the impregnation ratio and carbonizing temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. In case of heaters surface temperature at 70℃, the surface temperature of woodceramics was 53.9℃ when a sample was the impregnation ratio of 80%, while it was 54.2℃ when a sample was at 1,000℃ in carbonizing temperature, showing the highest. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

Heat Balance during the Electrowinning of Neodymium Metal in Molten Salt (네오디뮴 금속의 전해 채취 중의 열수지)

  • Cho, Sung-Wook;Yu, Jeong-Hyun;Choi, Ho-Gil
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.81-87
    • /
    • 2022
  • Energy consumption per unit weight of metal (kwh/kg of metal) is one of the most important economic indicators in the process of molten salt electrolysis. It is related to the heat loss of salt bath and the current efficiency of the process. The current efficiency is highly dependent on electrolysis temperature. On the other hand, the temperature of salt bath may increase significantly due to the difference (larger energy input than consumption) in heat balance at the beginning of electrolysis, which may cause different electrolysis temperature from an initially targeted value. This results in a bad effect on current efficiency. Therefore, it will be helpful to the reduction of energy consumption to compare the calculated and measured values of the temperature change of salt bath through the heat balance review at the early stage of electrolysis and to evaluate the energy loss to outside. In this study, based on the authors' experimental data, the heat balance was reviewed at the beginning of the electrolysis, and it was possible to evaluate the energy loss to the outside and the increase of the temperature of the salt bath quantitatively. Through such a method, heat loss reduction plan can be derived and current efficiency can be improved so that energy consumption can be reduced.

Prediction of Temperature and Degree of Cure of Carbon Fiber Composites Considering Thermal Chemical Reaction (화학 반응열을 고려한 탄소 섬유 복합재 온도와 경화도 예측)

  • Jae-Woo Yu;Wie-Dae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2023
  • In the manufacturing process of thermosetting carbon fiber composite materials using an autoclave, the internal temperature changes according to the set temperature cycle. This temperature change causes the resin in the composite material to cure. Heat is generated through the chemical reaction of the resin, which can result in a difference between the temperature inside the autoclave and the temperature of the composite material. Previous research assumed that the temperatures of the composite material and the autoclave were the same and analyzed to predict the residual stress and thermal deformation after manufacturing. However, these stresses and deformations depend on the temperature and degree of cure of the composite material. Therefore, this study verifies a thermal-chemical model analysis technique that takes into account the heat generated by the chemical reaction of the resin to accurately calculate the temperature and degree of cure. Additionally, case studies were conducted for different thicknesses to investigate whether this model exhibits similar trends across varying thicknesses.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Properties of Ceramics from a Board Mixed with Sawdust and Rice Husk - Effect of Percentage of Resin Impregnation and Carbonization Temperature - (톱밥과 왕겨로 제조된 혼합세라믹의 물성 - 수지함침율 및 소성온도의 영향 -)

  • Oh, Seung-Won;Ji, Piao Jin;Jeong, In-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.30-37
    • /
    • 2005
  • This study aimed at offering basic data to develop a new use of sawdust and rice husk. Research investigated the variation of density, weight loss and dimensional decreasing rate by the percentage of resin impregnation and carbonization temperature of ceramics, which were formed by the percentage of resin impregnation of 40~80% and carbonization of $600{\sim}1200^{\circ}C$ with board impregnated with phenolic resin made from sawdust and rice husk. The results of this study were as follows:1) As the percentage of resin impregnation increased, the thickness shrinkage and weight loss were decreased; on the other hand, density and modulus of rupture increased. Meanwhile, the carbonization temperature at $1200^{\circ}C$ showed the highest values, as the density was $0.81g/cm^3$ and the bending strength was $77.9kgf/cm^2$ in the percentage of resin impregnation at 70%. 2) As the carbonization temperature grew higher the linear shrinkage, thickness shrinkage and weight loss increased while the density increased until the carbonization temperature of $1000^{\circ}C$; but then decreased slightly at $1200^{\circ}C$.

Temperature Effect on the Retention Behavior of Sugars in Ion Exchange Chromatography (이온 교환 크로마토그래피에서 온도가 당의 체류 특성에 미치는 영향)

  • Kim, Jin-Il;Lee, Chong-Ho;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.722-727
    • /
    • 2005
  • Dow99Ca350 (Dowex monosphere 99Ca/350 separation resin), MFG-220, and Finex CS-10GC are ion-exchange resins, and primarily used to separate sugars, and all of these resins have poly styrene DVB backbone, and sulfonyl group. These resins are already used to separate sugars continuously at sugar industry at constant temperature. These resins are used in experiments for understanding temperature effect on retention or adsorption behavior. Using Dow99Ca350, swelling test, porosity test, pulse test, and frontal analysis at various temperatures were performed. In the cases of MFG-220, and Finex CS-10GC, the effect of temperature variation was verified by pulse test. The experimental results are shown that Dow99Ca350, MFG-220, and Finex CS-10GC, which are commercial resins for sugar separation, are stable to temperature variation because the maximum change of retention time of fructose, and glucose are 1.76, and 3.37% respectively.

A Study on the Early Strength Prediction of Lightweight Polymer Mortars by the Maturity Method (적산온도법에 의한 경량 폴리머 모르터의 초기강도 예측에 관한 연구)

  • 이윤수;대빈가언;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.191-202
    • /
    • 1998
  • The maturity method in which the strength increase of cement concrete is expressed as a function of an intergral of the curing period and temperature of the concrete has often been applied to its strength prediction. For the purpose of the application of the maturity method to the compressive strength prediction for lightweight polymer mortars using an unsaturated polyester resin as a binder, the lightweight polymer mortars with various catalyst and accelerator contents, are prepared. tested for compressive strength, and the datum temperatures for the maturity equations are estimated. The maturity is calculated by using the maturity equations with the estimated datum temperature. The compressive strengths of the lighweight polymer mortars are predicted from the maturity-compressive strength relationships.

Dielectric Properties of Bisphenol-A Based Epoxy Resin Composite with Varying Temperature (비스페놀-A를 기반으로 제작한 에폭시 복합체의 온도 변화에 따른 유전특성)

  • Lee, Ho-Shik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Such electrical properties (dielectric permittivity and dielectric loss of epoxy resin with the variations of frequency (30 ~ 300k Hz) and temperature ($20{\sim}160^{\circ}C$) have been measured. Dielectric dissipation of three specimen did not occurred below the glass transition temperature (Tg) regardless of frequency, but occurred above its temperature.