• Title/Summary/Keyword: 수중 폭발

Search Result 78, Processing Time 0.025 seconds

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion (수중폭발에 의한 해중철도의 간이 충격 응답 해석)

  • Seo, Sung-Il;Sa-Gong, Myung;Son, Seung-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • To design a submerged floating railway that is safe against underwater explosions, railway behavior must be investigated and clarified. In this paper, shock waves and impulse pressures generated by a charge away from the submerged floating railway are expressed using experimental formulas. The submerged floating railway tethered by mooring lines is modeled as a simply supported beam with elastic springs. Finite element analysis for the beam model subjected to impulse loading is conducted so that the response of the submerged floating railway can be investigated. For design purposes, a simplified analysis method combined with dynamic load factor is proposed for the same model. Maximum deformation and internal forces are calculated and compared with the time dependent analysis results. It is shown that the simplified analysis results show good agreement.

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.

3-Dimensional Underwater Explosion Shock Response Analysis of a Floating Structure considering Cavitation Effects (캐비테이션을 고려한 부유구조물의 3차원 수중폭발 충격응답 해석)

  • 이상갑;권정일;정정훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.1-11
    • /
    • 2003
  • For an accurate shock response analysis of a floating structure such as a naval surface ship subjected to an UNDEX(UNDerwater Explosion), the cavitation effects due to reflected wave at free surface and wetted structural surface should be considered. In this study, for the consideration of cavitation effects an effective method using LS-DYNA/USA and its theoretical background were presented. Through the application of the analysis of bulk cavitation phenomena in the free field, it could be confirmed that almost the same results were obtained between LS-DYNA/USA code and the analytical method. for the investigation of cavitation effects from the structural shock response characteristics, three dimensional UNDEX shock response analysis of an idealized ship model was also carried out It could be found that the cavitation Phenomena gave significant effects on the structural shock response characteristics, and especially that the shock loadings calculated at the installed location of shipboard equipment were underestimated in the case of no consideration of the cavitation effects, which might cause the severe mistake in its shock-resistance design.

Performance Evaluation of Weir Structures Under Blast Loads (폭발하중에 의한 다기능-수중보 구조물 거동평가)

  • Jeon, Jun-Tai;Jung, Woo-Young;Ju, Bu-Seog
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • 최근 위험물질에 의한 폭발 및 테러의 위험성 증가로 인하여 사회간접자본 시설물인 댐/보, 원자력 발전소, 병원 구조물과 같은 주요 시설물의 폭발 안전성 평가 연구가 이슈화 되고 있어, 본 연구에서는 가스폭발에 의한 다기능 보 구조물의 거동을 평가하고 안전성을 분석 하고 자 한다. 본 연구에서 폭발 해석에 필요한 하중 조건 산정은 PHAST 프로그램을 사용하여 주변 온도 및 공기 특성 등을 고려한 약 5톤의 가스 폭발 조건을 구축 하였다. 또한 다기능 보 구조물의 거동 분석을 위해 구조물-지반 상호 작용을 고려한 2차원 유한 요소 모델을 구축하여 폭발에 의한 구조물 거동을 평가 하였다. 다기능 보 구조물의 수치해석 결과 보 구체와 Stilling Basin구조물 사이의 연결부에 응력집중 현상이 발생하는 것으로 평가 되었다.

  • PDF

Underwater Explosive Welding of Stainless Steel and Magnesium Alloy (수중 충격파를 이용한 스테인레스 스틸과 마그네슘합금의 폭발용접에 관한 연구)

  • Lee, Joon-Oh;Kim, Young-Kook;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Magnesium is one of the light weight materials, which can improve fuel economy and reduce emissions in automotive industry. Recently, magnesium alloys have gained considerable attention due to good mechanical properties. In this work, we have performed an explosive welding using the magnesium alloys (AZ31) and stainless steel (SUS 304). As a result, SUS304/AZ31 were successfully combined each other; however, a resolidified interlayer was observed at the point of welded layer. To reduce the resolidified interlayer, we have changed the thickness (0.5 mm and 1 mm) of stainless steel, distance (45 mm and 60 mm) between explosive and the center of materials and initial angle ($20^{\circ}$ and $30^{\circ}$) of explosive. In the case of the thickness 0.5 mm and angle of $30^{\circ}$, the resolidfied interlayer was not observed due to the increase of distance from the explosive. To accurately estimate the resolidified interlayer, electron probe micro-analyzer (EPMA) method and hardness were used. For the EPMA analysis, mixed materials were confirmed at the resolidified interlayer, and the measurement exhibited the middle value compared with the AZ31 and SUS304.

Development of Measurement System for the Underwater Explosion Shock Test of Naval Ships (함정의 수중폭발 충격시험을 위한 계측장비 시스템 개발)

  • 박일권;조대승;김종철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.66-74
    • /
    • 2003
  • In non-contact underwater explosion shock test of a real naval ship, measurement of shock loadings and responses should require onboard system to be able to safely trigger an explosive and to simultaneously and successfully measure scores of shock signals in the deteriorated environment. For this purpose, we have developed a shock-hardened measurement system resistible to 170g peak acceleration having 4 msec duration by resiliently mounting general purpose measurement instruments in racks. The system can simultaneously measure and record 200 signals to evaluate shock leadings and responses of the test ship by triggering an explosive and measurement instruments at the same time. We prove the performance of the developed system by introducing the signal acquisition results from of a real ship underwater shock test, firstly performed in Korea.