• Title/Summary/Keyword: 수중 무선 센서 네트워크

Search Result 29, Processing Time 0.026 seconds

Sequential localization with Beacon Nodes along the Seashore for Marine Monitoring Sensor Network (해안에 설치된 비콘 노드를 이용한 해양 모니터링 센서의 순차적인 위치 파악)

  • Kim, Chung-San;Kim, Eun-Chan;Kim, Ki-Seon;Choi, Young-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2007
  • Wireless sensor network system is expected to get high attention in research for now and future owing to the advanced hardware development technology and its various applicabilities. Among variety of sensor network systems, the seashore and marine sensor network, which are extended to get sampling of marine resources, environmental monitoring to prevent disaster and to be applied to the area of sea route guidance. For these marine applications to be available, however, the provision of precise location information of every sensor nodes is essential. In this paper, the sequential localization algorithm for obtaining the location information of marine sensor nodes. The sequential localization is done with the utilization of a small number of beacon nodes along the seashore and gets the location of nodes by controling the sequences of localization and also minimizes the error accumulation. The key idea of this algorithm for localization is that the localization priority of each sensor nodes is determined by the number of reference nodes' information. This sequential algorithm shows the improved error performance and also provide the increased coverage of marine sensor network by enabling the maximum localization of sensor nodes as possible.

  • PDF

Deep Learning based BER Prediction Model in Underwater IoT Networks (딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델)

  • Byun, JungHun;Park, Jin Hoon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.41-48
    • /
    • 2020
  • The sensor nodes in underwater IoT networks have practical limitations in power supply. Thus, the reduction of power consumption is one of the most important issues in underwater environments. In this regard, AMC(Adaptive Modulation and Coding) techniques are used by using the relation between SNR and BER. However, according to our hands-on experience, we observed that the relation between SNR and BER is not that tight in underwater environments. Therefore, we propose a deep learning based MLP classification model to reflect multiple underwater channel parameters at the same time. It correctly predicts BER with a high accuracy of 85.2%. The proposed model can choose the best parameters to have the highest throughput. Simulation results show that the throughput can be enhanced by 4.4 times higher than the conventionally measured results.

A 2MC-based Framework for Sensor Data Loss Decrease in Wireless Sensor Network Failures (무선센서네트워크 장애에서 센서 데이터 손실 감소를 위한 2MC기반 프레임워크)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.31-40
    • /
    • 2016
  • Wireless sensor networks have been used in many applications such as marine environment, army installation, etc. The sensor data is very important, because all these applications depend on sensor data. The possibility of communication failures becomes high since the surrounding environment of a wireless sense network has an sensitive effect on its communications. In particular, communication failures in underwater communications occur more frequently because of a narrow bandwidth, slow transmission speed, noises from the surrounding environments and so on. In cases of communication failures, the sensor data can be lost in the sensor data delivery process and these kinds of sensor data losses can make critical huge physical damages on human or environments in applications such as fire surveillance systems. For this reason, although a few of studies for storing and compressing sensor data have been proposed, there are lots of difficulties in actual realization of the studies due to none-existence of the framework using network communications. In this paper, we propose a framework for reducing loss of the sensor data and analyze its performance. The our analyzed results in non-framework application show a decreasing data recovery rate, T/t, as t time passes after a network failure, where T is a time period to fill the storage with sensor data after the network failure. Moreover, all the sensor data generated after a network failure are the errors impossible to recover. But, on the other hand, the analyzed results in framework application show 100% data recovery rate with 2~6% data error rate after data recovery.

Time Synchronization with Oceanic Movement Pattern in Underwater Wireless Networks (해수운동의 특성을 활용한 수중 무선 네트워크 시각 동기화)

  • Kim, Sungryul;Park, Seongjin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.486-496
    • /
    • 2013
  • Time synchronization in underwater environment is challenging due to high propagation delay and mobility of sensor nodes. Previous researches do not consider practical issues affecting on the accuracy of time synchronization such as high-channel access delay and relative position between sensor nodes. Also, those protocols using bidirectional message exchange shorten the network lifetime and decrease the network throughput because numerous transmission, reception and unnecessary overhearing can be occurred. Therefore, in our research, we suggest enhanced time synchronization based on features of underwater environment. It controls the instant of transmission by exploiting the feature of an oceanic movement and node deployment. Moreover, the protocol uses more accurate time information by removing channel access delay from the timestamp. The proposed scheme is also practical on the underwater sensor network requiring low-power consumption because the scheme conducts time-synchronization with smaller transmission and reception compared with previous works. Finally, simulation results show that the proposed protocol deceases time error by 2.5ms and 0.56ms compared with TSHL and MU-Sync respectively, reducing energy consumption by 68.4%.

Wireless Water Leak Detection System Using Sensor Networks (센서네트워크를 이용한 무선 누수 탐지 시스템)

  • Choi, Soo-Hwan;Eom, Doo-Seop
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.125-131
    • /
    • 2011
  • Water leak detection system is a system based on wireless sensor networks(WSNs) which detect a leak on water supply, localize the leak position and finally inform a water management center. A traditional leak detection method is to use experienced personnel who walk along a pipeline listening to the sound that is generated by the leaks and their effectiveness depend on the experience of the user. Also making more successful detection, it should be processed at middle of the night when people do not use water, as the result users have to operate the leak detection system at midnight. In this paper, we propose a new method for the water leak detection system based on the WSNs and describe it in detail. Leak detection devices which detect a leakage of water transmit and receive the result of water leak detection with each other by configuring WSNs to improve reliability of the detection result. Also, we analyzed the sound from water flowed in pipeline, proposed the pre-signal processing to separate a leakage sound from noisy sound. And lastly, It is especially important to make a time synchronization with water leak detection devices that are installed on the pipeline, we used 1PPS(1 Pulse Per Second) signal generated by GPS, therefore we could get a precise time synchronization. The proposed system set up in Namyangju and performances were evaluated.

ToA Based Sensor Localization Algorithm in Underwater Wireless Sensor Networks (ToA 기법을 이용한 수중 무선 센서 네트워크에서의 센서 위치 측정)

  • Lee, Kang-Hoon;Yu, Chang-Ho;Choi, Jae-Weon;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.641-648
    • /
    • 2009
  • Currently several kinds of sensor localization methods have been developed for terrestrial wireless sensor networks. This study, in order to extend the field to underwater environments, a localization technique is studied for UWSNs (Underwater Wireless Sensor Networks). In underwater environments, RF (Radio Frequency) signal is not suitable for underwater usage because of extremely limited propagation. Because of that reason UWSNs should be constituted with acoustic modems. But, to realize underwater application, we can borrow many design principles from ongoing research for terrestrial environments. So, in this paper we introduce the modified localization algorithm using ToA method which is based on the terrestrial research. First of all, we study the localization techniques for terrestrial environments where we investigate possible methods to underwater environment. And then the appropriate algorithm is presented in the underwater usage. Finally the proposed underwater based localization algorithm is evaluated by using computer.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Infrastructure-based Localization System using Underwater Wireless Sensor Network (구조화된 공간에서의 수중 무선 센서 네트워크를 이용한 위치 추정 시스템)

  • Park, Dae-Gil;Kwak, Kyung-Min;Chung, Wan-Kyun;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.699-705
    • /
    • 2012
  • In this paper, an infrastructure-based localization method using underwater wireless sensor network (UWSN) is addressed. A localization using the UWSN is necessary to widen the usage of underwater applications, however it is very difficult to establish the UWSN due to the restrictions of water. In this paper, to extend the usage of UWSN at the infrastructure, we propose a sophisticated UWSN localization method using the Received Signal Strength Indicator (RSSI) of the electromagnetic waves. During the electromagnetic waves propagating in underwater, there arises a lot of attenuation according to the distance, while the attenuation shows uniformity according to the distance. Using this characteristics, the localization system in underwater infrastructure is proposed and the experimental results show the effectiveness.

Design of Low-Power Hybrid LNA with Multi-Input for Mobile Ultrasound System (이동형 초음파시스템에 적합한 다중 입력방식의 저전력 혼성 저잡음 증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Sung-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Ultrasound system is one of the complex wireless signal processing systems that are widely used in the fields of modern industry such as medical diagnostics, underwater communications, and sensor-networks. Miniaturization of ultrasound system has been raging recently. In this paper, a hybrid LNA that is suitable for miniaturization and mobile diagnostic ultrasound system has been developed. The proposed LNA has low noise figure of less than 5dB, and the feedback resistor is designed to be electrically adjusted in order to attain the impedance-matching for various ultrasound transducers. It supports the whole ultrasound frequencies from 10KHz to 150MHz frequency band and also provides sleep modes. A gain from -18.8 to -29.5 dB is achieved by adjusting each transducer to fit the system character. Power consumption can be reduced up to 90% in similar performance as compared to the existing LNA.