• Title/Summary/Keyword: 수중카메라 시스템

Search Result 23, Processing Time 0.038 seconds

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Development of a real time surface and under water image integrating system for Korea artistic swimming team (국가대표 아티스틱 스위밍팀 지원을 위한 실시간 수상 수중 영상 통합 시스템 개발)

  • Min, Seokki;Lee, Sangcheol;Kim, Taewhan;Kil, Sekee;Kim, Ji-eun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.25-31
    • /
    • 2020
  • In this study, a real time image integrating system which can reconstruct two images from a surface camera and an under water camera into one new image was developed to support Korea artistic swimming team. The developed system consists of four USB cameras (two USB 2.0 and two USB 3.0) sealed in water proof case and one note book computer, and a LabVIEW based real time image merging program was developed. During field test, problem in cooperative motion of acrobatic formation was found, and it was proved that correction of motion to improve skill of the player could be possible in real time with aid of the developed system. After the filed test, the developed system has been being used to support Korea artistic swimming team.

Drone Saver : Underwater Drone search and rescue system using Mothership and ROV (Drone Saver : 모선과 수중 탐사정을 이용한 수중 드론 탐색 및 구조 시스템)

  • Ko, Seon-Jae;Park, Jae-Jeong;Kim, Seo-Jin;Jeong, Joo-Yeon;Choi, Byoung-Jo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1250-1253
    • /
    • 2017
  • 본 논문은 드론 산업이 발전함에 따라 하천, 호수, 바다 상공에서 활용하는 드론이 수중에 빠졌을 때, 물에 빠진 드론을 모선(Mothership)과 집게팔이 달린 ROV(Remotely Operated Vehicle)를 이용하여 인양하는 시스템을 제안한다. 제안한 시스템의 구성 요소는 세 가지로 첫 번째는 실시간으로 GCS(Ground Control Station)에 영상을 전송하며 ROV와 전력선 모뎀을 이용하여 통신을 하는 모선, 두 번째는 수중에 들어가 수중 카메라를 이용하여 육안으로 드론을 탐색하고 장착된 집게팔로 드론을 몸체에 고정시키는 ROV, 세 번째는 모선, ROV와 실시간으로 영상 데이터와 명령 신호를 주고 받는 GCS 이다.

An efficient alignment method of the Stereoscopic camera for three dimensional image acquisition (입체 영상 획득용 Stereoscopic Camera의 효율적 정렬 방법)

  • 김재한
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.575-578
    • /
    • 2001
  • 원격 조작이나 해저 수중 탐사에서 실제와 같이 거리감을 인식하며 제어하기 위하여, 3차원 입체 영상 카메라 장치를 사용하고 있다. 기본적인 구성 형태인 Stereoscopic Camera 시스템은 기구적으로 주시각 제어와 초점 제어가 이루어 지고 있으며, 획득영상에 대하여 영상 distortion 보정, 압축 처리 등의 영상 신호처리가 행하여진다. 양안 카메라의 수평 위치를 일치시켜 수평적으로 동일 위치의 pixel들이 정확한 epipolar line을 형성할 경우에, 주시각 제어가 용이하고 보정 및 영상처리 등의 연산량이 대폭 감소된다. 이와 같은 calibration 과정을, 기존의 시스템에서는, 주로 영상 획득 포기에 패턴을 사용하여 실시하거나, 물리적 수평 장치와 sensor 등의 보조 장치를 이용하여 calibration을 행한다. 그러나, 기계적으로 정밀하게 정렬을 한다고 하여도 두 카메라의 광축 및 CCD조립상 상이점과 특성의 불일치로 인하여 실제 획득된 영상에서는 변이와 회전이 포함된 영상을 얻게된다. 본 논문에서는 Stereoscopic Camera의 위와같은 정렬 오류의 문제점을 분석한 후, 제안 방식으로서 두 카메라의 획득되는 영상을 직접 영상 처리하여 수직 방향 및 회전 오류를 최소화 시켜 정렬하는 새로운 방법을 제시하며, 실험적으로 제안 방식의 효율성을 보인다.

  • PDF

Submerged Structure Surveying using Digital Image (디지털 영상을 이용한 수중구조물 측량)

  • Park Kyeong Sik;Jung Sung Heuk;An Jeong Ook;Lee Jae Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.401-408
    • /
    • 2005
  • Presently many constructions establish in underwater, but approaching to underwater constructions are difficult, for comparing with ground, underwater environment is different in media. Usually measurement methods for underwater constructions are using tapes, using depth gauges, using acoustic positioning systems. But, tapes are hard to measure the correct distance, for applying a right tension is not easy in underwater. Depth gauges have a weakness in settling, for it takes long time to do it. Acoustic positioning systems don't work well in confined spaces and cost a lot. Hence, the purpose of this study is, at first, to understand rays path in multimedia like water, glass and air. The second thing is to perform a camera calibration at the field to compare with the interior orientation parameter. And the third thing is to find out whether photogrammetry is applied for underwater object in using cube for accuracy examination. The last thing is to perform underwater photogrammetry about underwater object, which is pier model and riverbed. We came to the conclusion through this experiment that the applying underwater photogrammerty for underwater constructions and underwater ground is possible.

Turbidity Characteristics of Korean Port Area (국내 주요 항만 인근의 탁도 특성 분석)

  • Jang, In-Sung;Won, Deokhee;Baek, Wondae;Shin, Changjoo;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8889-8895
    • /
    • 2015
  • It is necessary to secure the underwater visibility in order to perform underwater works such as rubble mound leveling or inspection and management of underwater structures. In this study, turbidity data for typical port area in Korea were measured and analyzed according to the region. Underwater monitoring system including underwater camera and sonar system, which can be effectively attached to underwater equipment for various turbidity conditions, was also investigated.

Design of Drone for Underwater Monitoring and Net Cleaning for Aquaculture Farm (양식장 수중 모니터링 및 그물망 청소용 드론 설계)

  • Kim, Jin-Ha;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1379-1386
    • /
    • 2018
  • Conventional underwater cameras used in fish farms can only shoot limited areas and are vulnerable to underwater contamination. There is also a problem with contaminated farms as surplus residues are deposited as a result of feed supply to farms' nets. This paper proposes underwater drones for underwater monitoring of fish farms and cleaning nets. If underwater drones are used for management of fish farms, underwater imaging, monitoring and cleaning of fish farms' nets can be possible. By using this technology, data can be collected by detecting changes in the environment of a fish farm and responding to changes that occur within a fish farm based on the data. In addition, the establishment of an integrated control system will enable to build efficient and stable smart farms.

Realization of Fairy Tale - Robot Aquarium Display System with Visitor Interaction (관람객과 상호 교감하는 전래동화-로봇의 수중무대 연출시스템 구현)

  • Shin, Kyoo-Jae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1180-1187
    • /
    • 2018
  • This paper had implemented the underwater stage through interaction with fish robots and visitors in the background of traditional fairy tales using 3D floating hologram in an aquarium. The recognition of the object position of the spectator and the underwater robot were performed using the color recognition algorithm. Also, the position tracking algorithm was proposed to follow the object of the visitor and the original fairy tale. This experimental system consists of fish robot, camera, KIOSK for underwater robot control and beam project for underwater imaging. This experiment was carried out by the National Busan Science Museum, and it had satisfied the performance of the underwater stage.