• Title/Summary/Keyword: 수중입사

Search Result 64, Processing Time 0.02 seconds

Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface (자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.8-19
    • /
    • 1998
  • Nonlinear flow characteristics of a hydrofoil running under the free surface are investigated based on potential flow theory using singularity distribution techniques. Following Hess & Smith's method[12], sources and vortices are distributed on the surface of the foil and Rankine sources are distributed at a distance above the undisturbed free surface to solve the nonlinear free surface waves(so called Raised Panel Method). Using the linearized Neumann-Kelvin solution, the conversed solutions which rigidly satisfy the nonlinear free surface condition is obtained through an iterative technique. It is validated that the nonlinear solutions are compared with Duncan's experimental results(NACA 0012, $\alpha=5^{\circ}$), showing good correlations with each other. At a very shallow submergence and a very high speed the converged solutions are obtained. As the speed increases higher, it is shown that the difference between the nonlinear and linear solutions are trivial. Finally, the effects of the camber and thickness on the nonlinear flow characteristics of the foil are investigated.

  • PDF

Simulation of Time-Domain Acoustic Wave Signals Backscattered from Underwater Targets (수중표적의 시간영역 음파 후방산란 신호 모의)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.140-148
    • /
    • 2008
  • In this study, a numerical method for a time-domain acoustic wave backscattering analysis is established based on a physical optics and a Fourier transform. The frequency responses of underwater targets are calculated based on physical optics derived from the Kirchhoff-Helmholtz integral equation by applying Kirchhoff approximation and the time-domain signals are simulated taking inverse fast Fourier transform to the obtained frequency responses. Particularly, the adaptive triangular beam method is introduced to calculate the areas impinged directly by acoustic incident wave and the virtual surface concept is adopted to consider the multiple reflection effect. The numerical analysis result for an acoustic plane wave field incident normally upon a square flat plate is coincident with the result by the analytic time-domain physical optics derived theoretically from a conventional physical optics. The numerical simulation result for a hemi-spherical end-capped cylinder model is compared with the measurement result, so that it is recognized that the presented method is valid when the specular reflection effect is predominant, but, for small targets, gives errors due to higher order scattering components. The numerical analysis of an idealized submarine shows that the established method is effectively applicable to large and complex-shaped underwater targets.

Dynamic Tumble Stability Analysis of Seabed Walking Robot in Forward Incident Currents (전방 입사조류에 대한 해저보행로봇의 동적 전복안정성 해석)

  • Jun, Bong-Huan;Shim, Hyungwon;Yoo, Seongyeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.743-749
    • /
    • 2015
  • In this paper, we describe the dynamic tumble-stability analysis of a seabed-walking robot named Crabster (CR200) in forward-incident currents. CR200 is designed to be operated in tidal-current conditions, and its body shape is also designed to minimize hydrodynamic resistances considering hydrodynamics. To analyze its tumble stability, we adopt the dynamic stability margin of a ground-legged robot and modify the definition of the margin to consider tidal-current effects. To analyze its dynamic tumble stability, we use the estimated hydrodynamic forces that act on the robot in various tidal-current conditions, and analyze the dynamic tumble-stability margin of the robot using the estimated results obtained for the various tidal-current conditions. From the analyses, we confirm the improved tumble stability of the robot according to the movement of the tumble axis caused by the supporting points of the legs.

Analysis of the Flow Field around a Hydrofoil Catamaran by Using Model Experiment and Numerical Analysis (모형시험 및 수치해석을 통한 수중익쌍동선 주위의 유동장 해석)

  • Na, Y.I.;Lee, Y.G.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.61-71
    • /
    • 1997
  • Numerical and experimental studies are carried out to analyse the resistance characteristics of a hydrofoil catamaran which is advancing on calm water with uniform speed. For the hydrofoil catamaran with modified Wigley hull which has asymmetric transverse section and transom stem, the studies are carried out for the range of Froude number 0.2 to 1.0 and the angle of attack of the hydrofoil $0.0^{\circ}$ to $3.0^{\circ}$. The model tests are carried out in the ship model basin of Inha University. Also the numerical computations using a finite difference method are performed for the simulations of fluid flow around the hull form and the results are compared with the results of the model tests. The present computation results show well quantitative agreement with the experimental results. The experimental results show that the shape and angle of attack of the foils exerts a considerable influence on the running posture and resistance performance of ship.

  • PDF

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

Acoustic Characteristics of Lucite Slab with Circular Cylindrical Pores (원통형 다공을 갖는 판형 루사이트의 음향 특성)

  • Baik Jae Yoon;Roh Heui-Seol;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.299-302
    • /
    • 2000
  • 임의의 매질에서 음파의 전파는 매질의 고유물성 및 구조적 특성에 영향을 받게 된다. 본 연구는 의공학에서 관심을 가지는 골다공증 진단의 기초 물리적 음향 특성을 이해함에 목적을 두고 있다. 따라서 구조적 특성의 중요한 요소인 매질의 다공성에 초점을 두고 있으며, 비강체의 다공성 물질로써 루사이트 판에 원통 형태의 관을 균일하게 배열시켰고 이 관들의 배열을 다공성 구조로 간주하였다. 다공도는 본 연구에서 의미 있는 범위, 약 $0\%-30\%$에 제한하였으며, 다공도에 따른 음향 특성 변화를 관찰하기 위하여 다공도의 차이를 두었고, 관의 직경에 따른 음향 특성 변화를 관찰하기 위하여 같은 다공도와 두 종류의 관의 크기를 갖는 다공성 루사이트를 제작하였다. 실험은 수중에서 음파의 입사각에 대한 의존도를 배제하기 위하여 수직 입사에 대하여 수행하였고 사용된 주파수는 880kHz이다. 다공도 및 관의 크기의 변화에 따른 음파의 투과 계수의 변화를 관측하여 다공도 및 관의 크기의 변화에 따른 음향특성 변화의 상관 관계를 고찰함으로써 골다공증 진단에의 응용 가능성을 연구하였다.

  • PDF

Acoustical characteristics of anechoic tile with different wedge angles (쐐기 꼭지각이 다른 무반향 타일의 음향특성)

  • Kim Sung Ki;Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.273-276
    • /
    • 2000
  • 본 연구에서는 무반향 수조의 내벽 흡음 물질로 사용되는 무반향 타일을 쐐기형으로 제작하여 쐐기의 꼭지 각 변화에 따른 음향학적인 특성을 고찰하였다. 실험에서 사용된 쐐기형 무반향 타일의 크기는 $40{\cal}cm{\times}38.5{\cal}cm$ 이며, 타일을 구성하는 각 쐐기의 길이는 $2.75{\cal}cm$로 고정하고 각각 쐐기의 꼭지각이 $30^\circ$$60^\circ$ 인 타일을 제작하였다. 수중에서 쐐기가 없는 무반향 시료와 쐐기형 무반향 타일에 음파를 수직 입사하여 반사계수를 측정하였으며, 쐐기의 유무와 무반향 타일을 구성하는 쐐기의 꼭지각 변화에 따른 반사 및 흡음 특성을 고찰하였다. 음향특성 임피던스가 $2.14\times10^6$ Pa$\cdot$s/m인 쐐기형 무반향 타일을 25kHz 에서 100kHz의 주파수 영역의 음파를 입사했을 애 쐐기의 꼭지각이 $30^\circ$ 일 때 $60^\circ$보다 압력반사계수가 작고, 반사손실이 증가함을 알 수 있었으며, 그 결과로써 본 실험에서 사용된 $30^\circ$의 쐐기 꼭지각을 갖는 무반향 타일이 내벽 흡음 물질로서 성능이 더 좋다는 것을 확인하였다.

  • PDF

Study on Sound Reflection Control using an Active Sound Absorber (능동흡음재를 이용한 음파반사 제어기법 연구)

  • Chang, Woo-Suk;Gweon, Dae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.806-814
    • /
    • 2009
  • This paper reviews a study about sound reflection control using an active sound absorber. An active sound absorber includes sound transmitting and receiving piezocomposite sensor layers molded by water tight epoxy, and connected with a feedback controller. The multi-layer sensors and the controller consists a closed feedback loop, whose intrinsic characteristics shows excellent impedance matching performance within specified frequency band, and consequently, minimizes reflection waves. Multilayer sound transmission model is derived based on one dimensional model, and its performance is verified with experiment using a pulse tube setup.

A Beamforming Method for a Perturbed Linear Towed Array (비선형 형상 견인 어레이를 위한 빔형성 기법)

  • 김승일;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.478-484
    • /
    • 2002
  • Linear towed arrays (LTA) have a nonlinear shape due to tow vessel motion, ocean swells and currents. By reasons of nominally linear shape, various towed array shape estimation techniques have been developed since the perturbed shape cause the error in target detection. In this paper,, we propose the beamforming method for the perturbed LTA with simple structure. The proposed method linearizes a nonlinear phase of steering vector with position information measured by two reference sensors. It can be proved using some properties of Markov transition matrix, and iteration number of linearization process is decided by variance of cross phase difference. As a result of computer simulation in the ocean environment, beampattern of the proposed method is almost same with the ideal case in my type of array shape. In the signal-to-noise ratio (SNR) performance simlation, the DOA estimation performance of the proposed beamforming method is evaluated, and the comparison with Bartlett beamformer of the LTA shows that the proposed method can estimate. the spatial characteristic of sources more accuracy.

Analysis of Acoustic Back Scattering from Bubble Columns in Water (수중 기포기둥에 의한 음파의 후방 산란특성 분석)

  • Park, K.-J.;Yoon, S.-W.;Roy, R.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.36-43
    • /
    • 1991
  • Acoustic backscattering from a buble column in water was studied theoretically and experimentally. For theoretical analysis a general scattering theory was used by assuming the bubble column to be lumped element scatterer which can be characterized by its shape, void fraction and dimensions. When the void fraction is less than 1% and the incident frequency is higher than individual bubble resonance frequencies, the experimental results show that the acoustic backscattering from a bubble column depends mainly on the void fraction rather than the individual bubble sizes. It was also theoretically and experimentally observed that the acoustic backscattering levels were increased and their peaks moved to the lower frequency regin by raising the void fraction of bubble column.

  • PDF