• Title/Summary/Keyword: 수중시공

Search Result 93, Processing Time 0.03 seconds

Chloride Diffusion Coefficient Evaluation in 1 Year-Cured OPC Concrete under Loading Conditions and Cold Joint (하중조건과 콜드조인트를 고려한 1년 양생된 OPC 콘크리트의 염화물 확산계수 평가)

  • Oh, Kyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2017
  • Cold joint caused by construction delay is vulnerable to shear stress and it allows more rapid chloride penetration and diffusion. In the paper, investigation of chloride diffusion coefficient is performed for 1-year cured concrete considering compressive and tensile loading level and cold joint. The results are compared with the previous results in 91-day cured concrete. In the 1-year cured concrete without loading, 10.7% and 10.5% of diffusion reduction are evaluated for those in 91-day cured concrete, respectively. The reduction ratios are almost similar however the result in cold joint concrete shows much higher values. The results in 1-year cured concrete under 30% and 60% of compressive loading show reduction of chloride diffusion by 10.9% and 5.8% compared with 91-day cured results, which is caused by steady hydration of cement particles, so called, time effect. In the case of tensile loading, the differences in results are not significant regardless of time effect and cold joint since micro cracks which is weak point of concrete is much dominant despite of long term curing.

Application of Non-Alkaline Silica Sol Grouting Method Considering the Eco-Friendliness (친환경 비알칼리성 실리카졸 차수공법의 적용)

  • Jang, Yonggu;Kim, Sugyum;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.37-45
    • /
    • 2016
  • This study analyzes the environmental and durability problems of traditional (LW) grouting method. And the proposed method was compared to the others effects by analyzing the in-situ applicability and effect of performance of the method using the silica sol. This study analyzed the eco-friendly, effects of high strength silica sol through laboratory tests. The effects of the construction process were identified through the field tests. The compressive strength was increased by 1.3 times compared to the LW method and the shrinkage is 3~8 times less than that of LW method with water glass. No toxicity, which could affect soil contamination. In particular, it was confirmed that the Toxicity fish also survived with little pH change in the concentration tank. Also it confirmed the construction effects through field test. Field tests are a standard penetration test, permeability test, LLT, BST. Permeability was reduced to $1{\times}10^{-5{\sim}-6}cm/sec$.

Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge (원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가)

  • Kim, Jae-Hyun;Lee, Cheol-Ju;Shin, Hee Jeong;Kim, Seong Hwan;Goo, Jeong Min;Jung, Chung Yeol;Jeon, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.61-73
    • /
    • 2023
  • Suction buckets are feasible options for offshore foundations to support subsea structures in deep water, enabling suction-induced installation by pumps. Recently, hybrid suction bucket foundations that combine single or multiple suction buckets with a mat foundation have been considered. The foundations effectively increase the load capacity while reducing construction costs. However, there is still insufficient experimental validation of hybrid suction bucket foundations regarding their bearing capacity. Furthermore, research on the horizontal load capacity under low vertical and moment loads is inadequate. In this study, we investigate the feasibility of using a hybrid suction bucket foundation for subsea installations in clay. We considered two types of hybrid suction bucket foundations: a circular mat with a single suction bucket and a square mat with multiple buckets. Centrifuge tests were performed to understand the hybrid suction bucket foundation characteristics under horizontal loads and their corresponding bearing capacity. Particularly, we verified the effect of the mat foundation and bucket embedment depth on the horizontal bearing mechanism and capacities. Results confirmed that the hybrid suction bucket foundation outperforms the single suction bucket.