• Title/Summary/Keyword: 수중경화

Search Result 28, Processing Time 0.024 seconds

A Study on Glass/Mo/ZnO/Glass Thin-film-heaters for Water Heating (수중 발열을 위한 Glass/Mo/ZnO/Glass 구조의 박막형 발열체 연구)

  • Kim, Jiwoo;Choi, Dooho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2022
  • In this study, we demonstrated an eco-friendly thin-metallic-film-based heater which can be operated in water. Based on the materials stability, Mo was selected as the heating element to secure long-term stability. Using a magnetron sputtering, 40 nm-thick Mo layers were deposited onto a glass substrate, followed by the deposition of 60-nm-thick ZnO layer to prevent oxidation during the heater fabrication process. Then, PVB (Polyvinyl Butyral) was applied on top of ZnO layer and an additional glass substrate was placed, which were heated at 150℃ for 2 hr. The PVB was cured with strong adhesion by the processing condition. We operated the Glass/Mo/ZnO/Glass heater in water, and it was shown that the water temperature reached 50℃ within 2 minutes, with a minimal resistance change of the heater. Finally, the heaters exhibit a semi-transparency, and this aesthetic advantage is expected to contribute to the added value of the heater.

The Engineering Properties of Underwater-Hardening Epoxy Mortar According to the Replacement Proportion of RCSS (급냉 제강 슬래그의 대체율에 따른 수중 경화형 에폭시 모르타르의 공학적 특성)

  • Kawg Eun-Gu;Cho Sung-Hyun;Park Sang-Hun;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.401-404
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performance are considered in structures. Epoxy mortar in the underwater used to the repair and reinforcement for durability. Epoxy mortar in the underwater-harding maked epoxy and filler. Filler is divided aggregate and powder system. Because aggregate take a matter too seriously to supply that alternation material is used to rapidly chilled steel slag. As result of study, it is possible that rapidly chilled steel slag can be applied for replacement materials about aggregate in epoxy mortar because the strength is not different.

  • PDF

A Study on the engineering Properties of Repairing Epoxy-Mortar According to Hardener types for Structures under Underwater and Humidity (수중 및 습윤 환경구조물 보수용 에폭시 모르타르의 경화제 종류에 따른 공학적 특성에 관한 연구)

  • Park Duk Jun;Park Sang Hun;Lee Dae Kyung;Bae Kee Sun;Kim Jin Man;Back Sin Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.277-280
    • /
    • 2005
  • Epoxy-mortar composites have been wildly used as finishing and repairing materials in the construction because of their excellent properties. Conventional epoxy-mortars and concretes have an inferior applicability and cost performance ratio due to the two component mixing of the epoxy resin and hardener. In this study, we examined the engineering effect of compressive strength and flexible strength according to the various epoxy-hardener in underwater and humidity environment, and evaluated the hardener types and physical effect of Epoxy mortar using cement binder in underwater and air condition. In this study, it was clarified that the engineering properties of repairing epoxy-motars were effected by the type of hardener.

  • PDF

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

Evaluation of Corrosion Characteristics of Underwater Hardening Paint (수중 경화형도료의 부식특성에 관한 전기화학적 고찰)

  • Moon, Kyung-Man;Oh, Min-Seok;Lee, Myung-Hoon;Lee, Syung-Yul;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.85-91
    • /
    • 2011
  • Many protection methods such as surface coating, electric protection, or other methods have been applied to the numerous steel structures widely used in continental and marine areas to control their corrosion, which is done from an economic point of view. Most of these steel structures are primarily protected by coating methods. However, some steel piles under seawater are protected by the electric protection method, that is, either using an impressed current or a sacrificial anode method. Furthermore, environmental contamination may cause a severely corrosive environment, which, in turn, causes the accelerated corrosion of steel structures. Subsequently, coated steel structures could deteriorate more rapidly than the designed lifetime because of the acid rain caused by air pollution, etc. Therefore, a coating of marine paint exposed to seawater, that is, underwater hardening painting, is increasingly required to be fast drying as well as highly corrosion resistant. In this study, five types of underwater hardening paints were prepared with different resin series and additives. Their corrosion and water resistances were investigated using electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements, etc. Even though it is generally accepted that the corrosion resistance of bare steel tends to increase with a shift of the corrosion potential in the noble direction, the corrosion resistance of a sample with a coating exhibited a relatively better tendency when it had a lower corrosion potential in this study. The corrosion current density was also decreased with a decrease in the diffusion limiting current density, which may mean that there is some relationship between corrosion and water resistance. The S sample of the ceramic resin series showed the relatively best corrosion and water resistance among those of samples, while the worst corrosion and water resistance were observed for the R sample of the epoxy resin series. The corrosion and water resistance of those samples tended to deteriorate with an increase in the immersion days, and their corrosion and water resistances were considered to be apparently improved by the types of resin and additives.

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

Development of Stress-Strain Relationship Considering Strength and Age of Concrete (콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발)

  • 오태근;이성태;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • Many investigators have tried to represent the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of empirical expressions for stress-strain relationship, however, have focused on old age concrete, and were not able to represent well the behavior of concrete at an early age. Where wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In this paper, effect of 5 different strength levels and ages of from 12 hours to 28 days on compressive stress-strain relationship was observed experimentally and analytically. Tests were carried out on $\phi$100${\times}$200mm cylindrical specimens water-cured at 20${\pm}$3$^{\circ}C$. An analytical expression of stress-stain relationship with strength and age was developed using regression analyses on experimental results. For the verification of the proposed model, the model was compared with present and existing experimental data and some existing models. The analysis shows that the proposed model predicts well experimental data and describes well effect of strength and age on stress-strain relationship.

A Study on the Applicability of Acrylic Water Leak Repair Materials used to Repair Cracks in Conduits and Underground Structures (관거 및 지하구조물 균열 보수에 사용되는 아크릴 누수 보수재의 적용성에 대한 연구)

  • Eunmi Lee;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2024
  • Various injection materials, such as asphalt-based injection materials, urethane-based injection materials, cement- based injection materials, and acrylic-based injection materials, are used for the repair of aged conduits and underground structures with cracks. In this study, research was conducted on an environmentally friendly acrylic- based leak repair material that exhibits good curing properties even in humid conditions and stability in temperature fluctuations. To compare the performance of the improved acrylic leak repair material with the existing acrylate injection material, experiments were conducted using KS standard methods, including underwater length change rate tests, underwater leakage resistance tests, and chemical performance tests. The comparative experiments revealed that the improved acrylic leak repair material showed no changes in shrinkage due to humidity, temperature variations, or chemical reactions compared to the existing acrylate injection material. In the underwater resistance test, the improved acrylic leak repair material did not show any leakage. Additionally, to assess the environmental impact of the improved acrylic leak repair material, acute fish toxicity tests and acute oral toxicity tests were conducted, and the results showed no mortality and no specific concerns with the test specimens. The experimental results led to the conclusion that the improved acrylic leak repair material is considered to be superior in performance, environmentally safe, and harmless to the human body. Based on various experimental results, it is inferred that the improved acrylic leak repair material is suitable for use as a repair material for cracks in manholes and underground structures compared to the existing acrylate repair material. This study aims to propose valuable data for future technological development by evaluating the applicability of acrylic leak repair materials.

The Effect of STPP on Compressive Strength of Sodium Silicate-Cement Grout (STPP가 규산계 시멘트 주입재의 강도에 미치는 영향)

  • Chun, Byungsik;Yang, Hyungchil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.25-34
    • /
    • 2006
  • Portland cement and sodium silicate are widely used as the main components of the injection, which are used to prevent flow and improve ground condition. The main problem of the injection material is the leaching of the sodium hydroxite and silicate due to the limited reaction with the cement. This paper studies the effect of cement hydration retarder on the compressive strength of the sodium silicate - cement gel. A series of tests, including digital-type testing machine, X-ray diffraction and scanning electron microscope are performed. Results clearly demonstrate that the sodium tripolyphosphate, which is the cement hydration retarder in the test, significantly improves the initial strength of the homogel.

  • PDF