Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.6-9
/
2016
최근 3D 스캔 장비 발전과 함께 물체를 스캔하여 모델링하는 역설계 기술이 발전하고 있다. 하지만 역설계를 통해 만들어진 메쉬는 3D 스캔 장비의 데이터 누락, 측정 에러와 같은 이유 때문에 무딘 모서리, 거친 표면과 같은 에러가 발생한다. 이러한 에러를 제거하기 위해 다양한 메쉬 에디팅 방법이 연구되고 있다. 대부분의 기존 방법은 특정 영역을 세밀하게 에디팅 하기 때문에 사용자 에디팅 능력에 따라 메쉬 품질이 달라지고, 에디팅 시간도 오래 걸린다. 본 논문은 프리미티브 수정을 이용한 새로운 메쉬 에디팅 방법을 제안한다. 먼저 원본 메쉬를 모양에 따라 여러 개의 메쉬 세그먼트로 나눈다. 그런 다음 각 메쉬 세그먼트에 프리미티브 타입을 지정하고 해당 파라미터를 수정하여 사용자가 원하는 모양으로 에디팅 한다. 제안한 방법은 프리미티브 수정 기반의 직관적 사용자 인터페이스를 지원하며 빠른 시간 안에 사용자가 의도한대로 에디팅 할 수 있다.
Annotated Corpus is important to understand natural language using machine learning method. In this paper, we propose a new method to automate error reduction of annotated corpora. We use the Ripple-Down Rules(RDR) for reducing errors and Kernel to extend RDR for NLP. We applied our system to the Korean Wikipedia and blog corpus errors to find the annotated corpora error type. Experimental results with various views from the Korean Wikipedia and blog are reported to evaluate the effectiveness and efficiency of our proposed approach. The proposed approach can be used to reduce errors of large corpora.
Choi, Junhwi;Ryu, Seonghan;Lee, Kyusong;Park, Seonyeong;Yu, Hwanjo;Lee, Gary Geunbae
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.129-132
/
2015
본 논문에서는 단어열 패턴과 리커런트 신경망을 이용한 하이브리드 음성 인식 오류 수정 방법을 제안한다. 음성 인식 결과 문장에서 음성 인식 오류 단어가 발견되었을 경우에 첫째로 단어열 패턴과 그 패턴의 발음열 점수를 통해 1차적 수정을 하고 적절한 패턴을 찾지 못하였을 경우 음절단위로 구성된 Recurrent Neural Network를 통해 단어를 음절단위로 생성하여 2차적으로 오류를 수정한다. 해당 방법론을 한국어로 된 음성 인식 오류와 그 정답 문장으로 구성된 TV 가이드 영역 말뭉치를 바탕으로 성능을 평가하였고, 기존의 단순 단어열 패턴 기반의 음성 인식 오류 수정보다 성능이 향상되었음을 볼 수 있었다. 이 방법론은 음성 인식 오류와 정답의 말뭉치가 필요 없이 옳은 문장으로만 구성된 일반 말뭉치만으로 훈련이 가능하여, 음성 인식 엔진에 의존적이지 않는 강점이 있다.
Journal of the korean veterinary medical association
/
v.35
no.2
/
pp.108-109
/
1999
오늘날 `인공수정`하면 소,돼지는 일반화된 방법이 된 지 오래다. 그런데 `개의 인공수정`하면 아직도 많은 수의사나 번식가들이 회의를 가지고 있다. 필자 역시 KCRC 울산 지회로 가입하기 전까지는 그런 부류에 속했다. 그러나 KCRC의 수차례의 Canine Reproduction(AL)에 대한 세미나와 실습을 통하여 냉동 정액을 이용하여 인공수정을 할 수 있구나 하는 생각을 가지게 되었고 필자가 인공수정의 전 과정을 스르로 해 본 결과 나름대로 확신을 가질 수 있게 되었다. 물론 다음의 한 예가 인공수정에 대한 의문을 모두 제거하리라는 기대는 무리가 있겠지만 최소한 개의 인공 수정에 대한 이해의 폭은 넓히리라 확신한다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.441-443
/
2000
연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식률 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 에러 패턴을 통계적 방법에 의해 학습하고 후처리 모듈을 이용하여 인식시에 발생하는 에러를 적은 비용과 시간으로 수정할 수 있도록 하는 것이다. 실험은 3000 단어급의 한국어 낭독체 연속 음성을 대상으로 하여 형태소와 의사형태소를 각각 인식단위로 하고, 언어모델로 World bigram과 Tagged word bigram을 각각 적용 실험을 하였다. 형태소, 의사 형태소일 경우 모두 언어 모델을 tagged word bigram을 사용하였을 경우 N best 후보 문장 중 적당한 단어 후보의 분포로 각각 1 best 문장에 비해 12%, 18%정도의 에러 수정하여 문장 인식률 향상에 상당한 기여를 하였다.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.231-236
/
2009
본 논문에서는 통계적으로 추출한 수정규칙을 이용하여 구 기반 한-중 통계기계번역 시스템(PBSMT)의 단어정렬 결과를 개선하는 방법을 제안한다. 논문에서 제안하는 수정규칙은 단어정렬의 결과를 사람이 만든 정답과 비교하여 통계적으로 추출하였다. 본 논문에서는 위에서 추출한 수정규칙을 이용하여 한-중 통계기계번역 시스템의 단어정렬의 결과에서 한국어 기능어(functional word)에 나타나는 오류를 수정함으로써 단어정렬의 결과를 개선하였고 최종적으로 기계번역의 성능을 제고하였다.
오리 종란을 수집하기 위해서 이용하는 가장 보편적인 사육 방법은 암.수를 일정한 비율로 합사하는 것으로 자연교미를 이용하는 것이다. 그러나 우수한 종오리나 특정 합성종오리(종간 혹은 속간 잡종)를 생산하기 위해서는 인위적인 인공수정기술을 이용하여 계획교배를 하여야 하며, 이를 위해서 선발된 오리들은 케이지 사육을 하여야 한다. 오리 인공수정기술이 닭의 인공수정기술과는 숫오리의 정액 채취기술에서만 차이가 있고 다른 부분에서는 매우 유사하므로 정액채취부분을 중심으로 설명을 하고자 한다.
We consider use of Bootstrap calibration in the problem of setting a confidence interval for a linear combination of variance components. Based on the the modified large sample(MLS) method by Graybill and Wang(1980), Bootstrap Calibration is applied to improve the coverage probability of the MLS confidence bound when the experiment is balanced and coefficients of a linear combination are positive. Performance of the proposed confidence bound in small sample is investigated by simulation studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.