• Title/Summary/Keyword: 수정계수

Search Result 925, Processing Time 0.027 seconds

Development of Modification Coefficient for Nonlinear Single Degree of Freedom System Considering Plasticity Range for Structures Subjected to Blast Loads (폭발 하중을 받는 구조물의 소성 범위를 고려한 비선형 단자유도 시스템의 수정계수 개발)

  • Tae-Hun Lim;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, a modification coefficient for equivalent single degree of freedom (SDOF), considering the plasticity range of the member subjected to shock wave type of blast load, was developed. The modification coefficient for the equivalent SDOF was determined through comparison with the analysis of a multi-degree of freedom (MDOF) system. The parameters influencing the equivalent SDOF system analysis were chosen as the boundary conditions of the member and the ratio of the duration of blast load to the natural period of the member. The modification coefficient was calculated based on the elastic load-mass transformation factor. The modification coefficient curve was derived using an elliptical equation to ensure it exists between the upper and lower parameter bounds. Using the modification coefficient on examples with varying cross sections and boundary conditions reduced the SDOF analysis error rate from 15% to 3%. This study shows that using the modification coefficient significantly improves the accuracy of SDOF analysis. The modification coefficient proposed in this study can be used for blast analysis.

Response Modification Factors of Inverted V-type Special Concentrically Braced Frames (역V형 특수가새골조의 반응수정계수)

  • 김진구;남광희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The overstrength factor and the ductility factor are the two important factors that determine response modification factors used in current seismic codes, In this paper the overstrength and ductility factors of special concentric braced frames are determined by performing pushover analysis of model structures with various stories and span lengths. and by using those factors the response modification factors are obtained. According to the analysis results. the overstrength and the ductility factors are larger than the values proposed by the codes in low-rise structures. and the opposite is true in medium to high-rise structures, It is also found that the factors increase as the height of structures decreases and the span length increases.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Response Modification Factors of Inverted V-type Ordinary Concentrically Braced Frames (역V형 보통가새골조의 반응수정계수)

  • Kim, Jin-Koo;Nam, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2004
  • In this paper the overstrength factors, ductility factors, and response modification factors of ordinary concentric braced frames designed in accordance with a current seismic design code are determined by performing pushover analysis. According to the analysis results, the overstrength and the response modification factors turn out to be larger than the values regulated in the codes in most model structures. However if the braces are reinforced by BRB or zipper columns, the overstrength factors and response modification factors turn out to increase significantly.

A Study on the Appropriate Response Modification Factor(R) for the Complex Building Based on the Number of Stories of Lower Frame-Upper Wall (하부골조의 층수에 따른 주상복합건물의 정정 반응수정계수에 관한 연구)

  • 최문성;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.13-24
    • /
    • 2000
  • 최근 국내에서 많이 건설되어지고 있는 주상복합 건축물은 하부의 골조형식과 상부의 벽식 구조가 결합된 구조형식을 가지고 있다 따라서 지진 발생시 동일한 형식을 가진 건축물과는 상이하고 복잡한 반응을 보이게 된다 이러한 건축물의 등가정적 해석시 국내 규준에서는 기타구조물로 분류하여 3.5 의 반응수정계수를 적용하고 있다 그러나 이 계수는 검증되어지지 않는 상태로 사용되어지고 있으므로 상당한 위험성을 내포하고 있다 본 연구에서는 단순화한 주상복합 건물의 해석 및 실제의 건물에 대한 3차원 비선형 해석을 통하여 반응수정계수를 유도하였다 유도된 반응수정계수는 ATC 기준과 우리나라 기준의 차이를 고려한 보정을 수행하였다.

  • PDF

Numerical Evaluation of Stress Loss Rates and Adjusting Coefficients due to Internal and External Constraints of Concrete Long-Term Deformation (콘크리트 장기변형의 내·외부 구속에 의한 응력 손실률 및 수정계수 평가의 전산구조해석)

  • Yon, Jung-Heum;Kim, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • An object oriented numerical analysis program of axial-flexural elements and the step-by-step method (SSM) has been developed to analyze concrete long-term behaviors of structures constrained internally and externally. The results of the numerical analysis for simple and continuous prestressed (PS) concrete box and composite girders, pre-cast slab of continuous steel composite girder, and simple preflex composite girder show that the adjusting coefficient decreases by increasing constraint. The loss rates of pre-tension force were not sensitive but those of pre-compression force were increased rapidly by decreasing adjusting coefficient. This indicates that the design based on the loss rate of pre-tension can over-estimate the pre-compression force in a concrete section constrained internally and externally. The adjusting coefficients which satisfy results of the numerical analysis are 0.35~0.95, and it can be used as an index of constraint of concrete long-term deformation. The adjusting coefficient 0.5 of Bridge Design Specifications can under-estimate residual stress of PS concrete slab, and the coefficient 0.7 or 0.8 of LRFD Bridge Designing Specifications can under-estimate the loss rates of continuous PS concrete girders. The adjusting coefficient of hybrid structures should be less then 0.4.

Evaluation on the Edge Stiffening Affect of Composite Girder Bridge (합성형교의 외측강성 영향 평가)

  • Sung, Ki Tae;Park, Young Hoon;Lee, Seung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.179-186
    • /
    • 2008
  • To analyzing the validity for using the stiffness ratio in evaluating edge stiffness effect of the composite girder bridges, modification factors are analyzed with changing girder spacing. The relation between stiffness ratio, loading type, girder spacing and modification factors is analyzed. From the results of comparing modification factors analyzed from the field loading test and the established design method with the modification factor analyzed from this study, it was concluded that evaluating the edge stiffness effect using stiffness ratio is possible.

Rational Evaluation of Seismic Response Modification Factor of Steel Moment Frame Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 철골모멘트골조의 반응수정계수 산정법)

  • Lee, Cheol-Ho;Kim, Geon-Woo;Song, Jin-Gyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.11-17
    • /
    • 2007
  • In current seismic design practice, the response modification factor (R-factor) is used as a factor to reduce the elastic base shear demand to the design force level. As is well-known, the R-factor is a committee-consensus factor and, as such, highly qualitative and empirical. The relationship between the R-factor and the connection rotation capacity available in a particular structural system has remained a missing link. In this paper, a rational procedure to evaluate the R-factor is proposed. To this end, the relationship between the available connection rotation capacity and the R-factor is defined and quantified using nonlinear pushover analysis. An RRS steel frame designed according to IBC 2000 was used to illustrate and verify the proposed procedure. Nonlinear time history analysis results indicated that the R-factor definition proposed in this study is generally conservative from design perspective.

A Comparative Study on Constitutive Equations of Human Blood (인체혈액의 구성방정식에 관한 비교연구)

  • 서상호
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • 인체 동맥혈관내 혈액의 유동현상을 수치적으로 해석하기 위해서는 혈액의 유변학 적 성질을 구성방정식으로 나타내어야한다. 본 연구에서는 혈액의 점성계수를 표현하기 위 하여 비뉴턴유체의 점성을 나타내는 식으로서 Carreau 모델, 수정 Cross 모델, 수정 Powell-Eyring 모델과 수정멱법칙모델을 사용하였고 원형관내 혈액의 정상유동을 수치모사 하기 위하여 겉보기점성계수를 이용하는 구성방정식을 운동량방정식에 적용하였다. Carreau 모델과 수정멱법칙모델을 적용할 때 레이놀즈수의 변화가 중심선상의 속도와 길이방향의 압 력변화에 미치는 영향을 고찰하였다. 전단율이 높은영역에서 혈액의 겉보기점성계수를 효과 적으로 나타낼수 있는 수정멱법칙모델을 제시하였다.

  • PDF

A Study of the Modification Factor(B) in the AISC Specification for Elastic Buckling of Web-Tapered Beams (웨브 변단면보의 탄성좌굴에 대한 AISC 기준의 수정계수(B)에 관한 연구)

  • Ryu, Hyo-Jin;Lim, Nam-Hyoung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.45-49
    • /
    • 2008
  • This paper investigated the accuracy of the current design formulae for the elastic buckling strength of web-tapered I-beams in AISC-LRFD specification. The basic concept is to replace a tapered beam by an equivalent prismatic beam with a different length, but with a cross section identical to that of the smaller end of the tapered beam. The modification factor, B, is used to account for the stress gradient within the unbraced length and the lateral restraining effects offered by the adjacent segments. The modification factor(B) suggested in AISC-LRFD specification was compared with the finite element method(FEM) results. This paper presented a redefined method to calculate the modification factor(B).