• Title/Summary/Keyword: 수입신고 데이터

Search Result 4, Processing Time 0.023 seconds

Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data (관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별)

  • Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2021
  • In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.

CNN-based Recommendation Model for Classifying HS Code (HS 코드 분류를 위한 CNN 기반의 추천 모델 개발)

  • Lee, Dongju;Kim, Gunwoo;Choi, Keunho
    • Management & Information Systems Review
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2020
  • The current tariff return system requires tax officials to calculate tax amount by themselves and pay the tax amount on their own responsibility. In other words, in principle, the duty and responsibility of reporting payment system are imposed only on the taxee who is required to calculate and pay the tax accurately. In case the tax payment system fails to fulfill the duty and responsibility, the additional tax is imposed on the taxee by collecting the tax shortfall and imposing the tax deduction on For this reason, item classifications, together with tariff assessments, are the most difficult and could pose a significant risk to entities if they are misclassified. For this reason, import reports are consigned to customs officials, who are customs experts, while paying a substantial fee. The purpose of this study is to classify HS items to be reported upon import declaration and to indicate HS codes to be recorded on import declaration. HS items were classified using the attached image in the case of item classification based on the case of the classification of items by the Korea Customs Service for classification of HS items. For image classification, CNN was used as a deep learning algorithm commonly used for image recognition and Vgg16, Vgg19, ResNet50 and Inception-V3 models were used among CNN models. To improve classification accuracy, two datasets were created. Dataset1 selected five types with the most HS code images, and Dataset2 was tested by dividing them into five types with 87 Chapter, the most among HS code 2 units. The classification accuracy was highest when HS item classification was performed by learning with dual database2, the corresponding model was Inception-V3, and the ResNet50 had the lowest classification accuracy. The study identified the possibility of HS item classification based on the first item image registered in the item classification determination case, and the second point of this study is that HS item classification, which has not been attempted before, was attempted through the CNN model.

A Classification Model for Customs Clearance Inspection Results of Imported Aquatic Products Using Machine Learning Techniques (머신러닝 기법을 활용한 수입 수산물 통관검사결과 분류 모델)

  • Ji Seong Eom;Lee Kyung Hee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Seafood is a major source of protein in many countries and its consumption is increasing. In Korea, consumption of seafood is increasing, but self-sufficiency rate is decreasing, and the importance of safety management is increasing as the amount of imported seafood increases. There are hundreds of species of aquatic products imported into Korea from over 110 countries, and there is a limit to relying only on the experience of inspectors for safety management of imported aquatic products. Based on the data, a model that can predict the customs inspection results of imported aquatic products is developed, and a machine learning classification model that determines the non-conformity of aquatic products when an import declaration is submitted is created. As a result of customs inspection of imported marine products, the nonconformity rate is less than 1%, which is very low imbalanced data. Therefore, a sampling method that can complement these characteristics was comparatively studied, and a preprocessing method that can interpret the classification result was applied. Among various machine learning-based classification models, Random Forest and XGBoost showed good performance. The model that predicts both compliance and non-conformance well as a result of the clearance inspection is the basic random forest model to which ADASYN and one-hot encoding are applied, and has an accuracy of 99.88%, precision of 99.87%, recall of 99.89%, and AUC of 99.88%. XGBoost is the most stable model with all indicators exceeding 90% regardless of oversampling and encoding type.

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.