배수지는 정수처리 된 물을 급수하기 위해 정수물을 모아두는 저장소로서, 물의 수요량에 따라 급수량을 조절하여 안정적으로 물을 공급하기 위해 배수지의 수위 관리는 매우 중요하다. 현재 배수지 내에 수위 계측 센서를 설치하여, 가압장의 펌프운영을 통해 배수지의 최적 수위를 관리하고 있으나, 센서의 오작동 및 통신두절 등 사고대응을 관리자 감시에 의존하고 있어, 사고의 위험을 안고 있다. 본 연구에서는 배수시설의 안정적 운영을 위하여, 배수지의 수위 변화 예측 인공지능 모델을 제안하였으며, 배수지 수위 변화 예측모델의 현장적용에 대한 안정성을 확인하기 위하여 수위 데이터의 결측 상황에 대한 시뮬레이션을 통하여, 실제 수위 변화값과 예측된 수위 변화값의 비교를 통하여 모델의 유용성을 확인하였다.
수위-유량관계 곡선식은 시계열 수위자료를 유량자료로 변환해줄 수 있는 회귀식으로 측정단면의 형태, 단면 상 하류의 지형요인 등으로 인하여 영향을 고려하기 위하여 기간분할 혹은 구간분할을 수행한다. 구간분할을 위하여 측정단면의 변화를 고려한 관계자의 주관적인 판단이 주요 근거로 이용되고 있다. 따라서 본 연구에서는 기존에 개발된 수위-유량관계 곡선식의 자동구 구간분할방법에 대한 적용성 검토를 수행하였다. 객관화된 분할근거의 제시를 위하여 주관성을 배제하고 관측데이터를 기반으로 수위 증가에 따른 변동계수를 계산하였고, 변동계수가 정규분포를 따르는 것으로 가정 하에 계산된 변동계수가 전 단계에서 계산된 95% 신뢰구간 이내에 존재하지 않는 경우 구간을 분할하였다. 즉, 변동계수를 이용하여 집단 간의 특성을 비교하였으며, 변동 계수의 분포를 이용하여 분할을 위한 기준 값을 제시하였다. 방법론의 추정능력 검토를 위하여 가상의 곡선으로부터 생성된 데이터에 제안된 방법론을 적용하였고, 실제 유역에 적용성 검토를 위하여 금강에 위치한 무주 및 산계교 수위관측소 지점에 적용하였다. 결과적으로 자동으로 분할된 관계곡선식을 사용하여 추정의 정확도를 높일 수 있을 뿐만 아니라 외삽을 하는 경우 역시 그 정확도를 향상할 수 있음을 확인하였다. 마지막으로 실측값을 활용한 수위-유량관계 곡선식의 구축 시 구간 분할 전 후의 잔차데이터에 대하여 Shapiro-wilk 정규성 검정을 수행하였으며, 구간분할 후 잔차가 정규성을 갖게 되는 것으로 나타났다.
경상북도 고령군 다산면, 천안시 풍세면 삼태리 및 부여 정동ㆍ자왕 지역의 장기수위관측 데이터 및 강수, 대기압 자료의 시계열 분석을 통하여 대수층의 함양특성 및 특히, 대기압에 대한 지하수위 변화 특성을 통한 대수층의 특성(properties) 유추 가능 여부를 보고자 하였다. 하천에 인접한 자왕지구의 경우 자기상관분석에 의하면 다른 세 지역에 비해 데이터 값이 안정적이지 못하며, 대기압 변화에 대한 상관분석에서도 낮은 상관성을 나타낸다. 강수에 대한 함양 특성을 상호상관분석을 통해 해 보았으나, 강설에 의한 영향인지 대체적인 지연시간이 길게 나타났다. 차후 장기적인 데이터 수집 및 분석을 통해 좀 더 정확한 대수층 특성을 밝히고자 한다.
물관리의 기본이 되는 연속적인 유량 자료 확보를 위해서는 정확도 높은 수위-유량 관계 곡선식 개발이 필수적이다. 수위-유량 관계곡선식은 모든 수문시설 설계의 기초가 되며 홍수, 가뭄 등 물재해 대응을 위해서도 중요한 의미를 가지고 있다. 그러나 일반적으로 유량 측정은 많은 비용과 시간이 들고, 식생성장, 단면변화 등의 통제특성(control)이 변함에 따라 구간분리, 기간분리와 같은 비선형적인 양상이 나타나 자료 해석에 어려움이 존재한다. 특히, 국내 하천의 경우 자연적 및 인위적인 환경 변화가 다양하여 지점 및 기간에 따라 세밀한 분석이 요구된다. 머신러닝(Machine Learning)이란 데이터를 통해 컴퓨터가 스스로 학습하여 모델을 구축하고 성능을 향상시키는 일련의 과정을 뜻한다. 기존의 수위-유량 관계곡선식은 개발자의 판단에 의해 데이터의 종류와 기간 등을 설정하여 회귀식의 파라미터를 산출한다면, 머신러닝은 유효한 전체 데이터를 이용해 스스로 학습하여 자료 간 상관성을 찾아내 모델을 구축하고 성능을 지속적으로 향상 시킬 수 있다. 머신러닝은 충분한 수문자료가 확보되었다는 전제 하에 복잡하고 가변적인 수자원 환경을 반영하여 유량 추정의 정확도를 지속적으로 향상시킬 수 있다는 이점을 가지고 있다. 본 연구는 머신러닝의 대표적인 알고리즘들을 활용하여 유량을 추정하는 모델을 구축하고 성능을 비교·분석하였다. 대상지역은 안정적인 수량을 확보하고 있는 한강수계의 거운교 지점이며, 사용자료는 2010~2018년의 시간, 수위, 유량, 수면폭 등 이다. 프로그램은 파이썬을 기반으로 한 머신러닝 라이브러리인 사이킷런(sklearn)을 사용하였고 알고리즘은 랜덤포레스트 회귀, 의사결정트리, KNN(K-Nearest Neighbor), rgboost을 적용하였다. 학습(train) 데이터는 입력자료 종류별로 조합하여 6개의 세트로 구분하여 모델을 구축하였고, 이를 적용해 검증(test) 데이터를 RMSE(Roog Mean Square Error)로 평가하였다. 그 결과 모델 및 입력 자료의 조합에 따라 3.67~171.46로 다소 넓은 범위의 값이 도출되었다. 그 중 가장 우수한 유형은 수위, 연도, 수면폭 3개의 입력자료를 조합하여 랜덤포레스트 회귀 모델에 적용한 경우이다. 비교를 위해 동일한 검증 데이터를 한국수문조사연보(2018년) 내거운교 지점의 수위별 수위-유량 곡선식을 이용해 유량을 추정한 결과 RMSE가 3.76이 산출되어, 머신러닝이 세분화된 수위-유량 곡선식과 비슷한 수준까지 성능을 내는 것으로 확인되었다. 본 연구는 양질의 유량자료 생산을 위해 기 구축된 수문자료를 기반으로 머신러닝 기법의 적용 가능성을 검토한 기초 연구로써, 국내 효율적인 수문자료 측정 및 수위-유량 곡선 산출에 도움이 될 수 있을 것으로 판단된다. 향후 수자원 환경 및 통제특성에 영향을 미치는 다양한 영향변수를 파악하기 위해 기상자료, 취수량 등의 입력 자료를 적용할 필요가 있으며, 머신러닝 내 비지도학습인 딥러닝과 같은 보다 정교한 모델에 대한 추가적인 연구도 수행되어야 할 것이다.
댐 및 저수지 운영에 필수 요소인 수위 데이터의 신뢰성을 높일 수 있도록 수위측정에 가장 많이 사용되고 있는 부자식, 초음파식, 레이다식 수위계의 특성시험이 가능한 표준시험장치와 표준시험장치에 대한 운영의 일관성을 확보하기 위한 표준시험절차를 개발하였다. 또한, 표준시험장치의 최고측정능력을 산출하여 수위계 시험에 따른 불확도를 산출할 수 있도록 수위 측정 모델식을 제시하여 합성불확도1.408 mm와 확장불확도 3 mm를 각각 얻었다. 본 연구에서 제시된 최고측정능력은 수위데이터의 신뢰성 있는 자료 확보와 일관성 있는 자료관리가 가능하도록 품질관리 기반을 구축하였다.
수자원개발과 관리 측면에서 하천에서 흐르는 유량을 정확히 산정하는 것은 이수와 치수 두 측면에서 모두 매우 중요한 문제이다. 과거의 유량측정성과를 이용하여 수위-유량 관계 곡선식을 구하면, 현재 관측된 수위만으로도 유량을 간단히 산정할 수 있기 때문에 유량 산정에서 있어서, 수위-유량 관계 곡선식을 사용하는 것이 일반적이며, 따라서 수위-유량 관계식의 신뢰도에 의해 유량 산정의 정확성이 좌우되는 것이 사실이다. 과거 일반적인 단일 수위-유량 곡선의 적용으로는 유량추정에 높은 불확실성이 존재할 수 있음이 확인되어, 하천의 단면변화, 식생변화, 유사이동, 비정상류 등 영향인자를 파악하고 수위-유량 관계의 동적 변화를 추정하는 기술의 고도화가 다양하게 시도되고 있다. 기존 연구에서는 하천의 수위에 따른 단면 변화율 차이 등을 가정하고 수위구간을 구분 다른 수위-유량 관계식으로 추정하는 방안이 제안되거나, 부정류, 하상경사, 그리고 조도계수 변화에 따른 수위-유량 관계 변화 가정하고 특정 조건에 따라서 수위-유량 관계가 변화하는 특성이 연구되었다. 하지만, 검토한 바에 따르면 기존 연구에서는 대부분 수위 관측 지점에 한하여 단면 및 하상특성 등의 영향을 고려하였으며, 수km 떨어진 원거리 하류 범위에서의 하상 등 동적 변화로 인한 상류 지점의 수위-유량 관계의 영향에 대해서는 정량적 분석이 미진한 것으로 파악되었다. 따라서, 본 연구에서는 이러한 조건에 따른 복잡한 동적 수위-유량 관계를 분석하기 위한 기계학습 기반 데이터 분석기술의 활용 방안을 검토하고, 시범적으로 금강 세종보가 가동중이였던 2017년 관측된 보상류 5km 지점의 수위와 유량 데이터 분석에 적용하였다. 분석 결과 하류 5km 범위에서의 하상변화는 즉각적으로 상류의 수위-유량 관계를 변화시키는 것으로 확인되었다. 이러한 결과로부터 하류에서의 준설, 퇴적, 교량 및 보건설, 가동보 운영 등이 있을 경우 수km 떨어진 상류에서 수위-유량 관계는 크게 변화함을 예상할 수 있으며, 따라서 유량산정의 신뢰도 제고를 위해서는 본 연구에서 제안된 방안과 같이 동적 수위-유량 관계를 추정하는 기술이 점차 확대 적용되어야 할 것으로 판단된다.
지진이 발생하기 전·후에 지하수 수위는 급격하게 변화되는 것으로 알려져 있으며 지진 예측을 위해 지하수 수위 변화를 이용한다. 본 연구는 지진을 예측에 사용하기 위해 ANFIS 알고리즘을 이용한 밀양시의 지하수수위를 예측한다. 이를 위해 본 논문에서는 경남 밀양시의 기상청의 강수량, 기온 데이터와 한국농어촌공사 농촌지하수관측망의 지하수수위 데이터가 사용되었다. 예측 측정을 위해 RMSE, MAPE 오차 계산 방법을 사용하였다. 예측 결과 수위가 자연적인 요인에 의해 주기적인 패턴은 예측이 되었으나 인위적인 요인 등 다른 변수에 의해 변동되는 지하수수위 변화값은 감지하지 못하였다. 이를 해결하기 위해서는 지하수수위를 인위적인 변수 등을 수치화하여 데이터화 하는 것과 지하수수위를 측정한 관측공의 정확한 위치에 따른 강수량과 기압 등이 필요하다.
최근 농업환경의 변화와 기후변화에 대응하기 위해 농업용수 관리 정보화 및 과학화의 필요성이 증대되어 실시간으로 저수지 저수량과 농업용수 공급량을 파악하기 위해 자동 수위계측시설이 도입되었다. 농림축산식품부의 저수지 자동수위측정기 설치 및 운영지침에 따라 현재 농어촌공사 관리 저수지 1,734개소 및 수로부 1,880개소에 자동수위계가 설치되어 있으며, 저수지와 수로에서 10분 간격으로 수위자료가 생성되고 있다. 농업용 저수지 수문자료의 공인지점은 2016년 6개소에서 2019년 49개소로 증대되고 있으며, 데이터 품질 저하의 최소화 및 신뢰성 있는 수문자료 생성의 필요성이 증가함에 따라 농업용 저수지의 특성을 반영한 저수지 수위 오결측 데이터 보정 방안 및 수문 자료 품질관리 방안이 요구된다. 농업용 저수지의 수위 변화 및 강우-유출 현상은 물리적 모형을 구축하여 기상, 지형 등 영향 인자와 수위(또는 유출)와의 상관관계를 분석하는 것은 무적으로 불가능하였지만, 최근 인공신경망 (Artificial Neural Network, ANN) 등과 같이 black-box 형태의 모형을 이용하여 비선형적인 수문해석이 가능해졌다. 본 연구에서는 빅데이터와 인공신경망을 결합시킨 알고리즘인 딥러닝 (Deep Learning) 기반의 LSTM (Long Short-Term Memory) 모형을 활용하여 농업용 저수지 수위자료를 검토하여 자동계측기에서 발생하는 오류 보정을 위해 품질관리 방안을 제시하고자 한다.
지하수 관측이란 지하수위 하강, 수질오염 등 지하수 장해로부터 지하수를 보전 관리하고 대책을 수립하기 위하여 정기적 및 장기적으로 지하수위, 수질 등 부존된 지하수 특성의 상태와 변화하는 추이를 관찰하여 측정하는 행위를 말한다. 지하수는 지하의 보이지 않는 지층구조에서 매우 천천히 유동하므로 수위하강 및 수질오염 발생을 늦게 인지할 경우 원상회복이 불가능할 수 있고, 지하수 장해를 인지한 이후의 대처과정에서도 기존의 관측자료가 없거나 부족할 경우에는 원인분석과 대책수립이 지연되거나 불가능할 수 있으므로 지하수관리에 있어 관측정호를 설치하고 정기적으로 지하수의 부존 및 유동특성, 배경수질 등의 지하수 관측은 기본적이며 필수적인 요소이다. 따라서 지하수 관측망을 설치하고 운영하기 위해서는 관측 목적을 명확히 정의하고 관측 프로그램이 이를 만족시키도록 구성되어야하며 시간적, 공간적으로 지하수가 변동되는 것을 고려하여 관측 지역 대수층의 유형과 특성 등이 완전히 파악되어야 한다. 필요시 기존 관정을 활용하여 관측하며 관측 항목, 관측 유형, 위치측량 및 관측 주기 등은 관측의 목적에 부합되도록 한다. 관측 데이터의 생성, 전송 및 분석 진행과정 등이 완벽하게 정립되어 데이터의 생성에서부터 활용까지 체계화되어야 하고 지하수와 지표수는 연계된 단일 수자원으로서 지하수 관측은 지표수 관측과 연계되어 설계되고 분석되어야 한다. 또한 취득된 데이터의 정확성은 지속적으로 검토 확인되어야 하며 전문가의 능력을 활용하여 관련 자료의 분석이 이루어지고 데이터의 정도를 높이기 위한 후속조치들이 병행되어야 한다. 그리고 지하수위, 수질 등 관측 자료가 자연적인 지하수 유동 체계에 의하여 변화되는 것이라고 인식될 경우에는 관측 시스템 전반을 재평가하여 보다 효율적인 관측 시스템으로 발전시켜야 한다.
현재 홍수예보는 정형데이터인 유량 및 수위 등을 활용하여 이뤄지고 있다. 하지만 실제 사람들이 체감하는 홍수에 대한 위험도는 홍수예보 발령과는 달라 홍수예보가 이뤄지지 않은 지역에서 인명사고가 발생하기도 한다. 이는 수위 측정이 이뤄지지 않는 소규모 하천이나 사람들의 유동성이 큰 도심지역에서 빈번하게 발생한다. 이를 보완하기 위해서는 사람들의 체감 정도 및 인구의 유동성을 고려한 비정형데이터를 활용해야 한다. 특히 소셜 네트워크 서비스(Social Network Commuinty, SNS)를 사용하는 사람들이 많아지면서 기존에 사용되어 왔던 정형데이터 센서 이외의 데이터를 제공한다. 또한 개개인이 작성하는 글은 실시간으로 활용이 가능하여 인구의 유동성 및 시 공간적 데이터를 얻기에 유용하여 활용성이 매우 높은 비정형데이터이다. 따라서 본 연구에서는 SNS 데이터를 추출하고 이를 분석하여 2018년에 발생했던 강우사상과의 패턴을 비교하여 홍수예보에서의 활용성을 분석하였다. 홍수와 관련한 키워드를 중심으로 시 공간적 정보 및 추출이 가능한 웹 크롤러(Web Crawler) 프로그램을 작성하였으며 이를 토대로 데이터를 수집하였다. 수집한 데이터와 실제 홍수사상을 비교 분석을 한 결과 강우량 및 수위와 해당 지역에 대한 데이터의 양이 유사한 패턴을 보인 것으로 확인되었다. 실시간으로 데이터를 수집하고 이를 분석하여 리드타임을 충분히 확보한다면 홍수예측에 활용 가능할 것이라 생각된다. 본 연구는 한국건설기술연구원 19주요-대4-시드사업인 '커뮤니티 빅데이터 패턴 해석을 통한 수난(水難) 발생 및 규모 예측 기술 개발(20190126-001) '로 수행되었습니다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.