• Title/Summary/Keyword: 수위

Search Result 4,002, Processing Time 0.024 seconds

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF

Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: V. Field Validation of the Sky-condition based Lapse Rate Estimation Scheme (기상청 동네예보의 영농활용도 증진을 위한 방안: V. 하늘상태 기반 기온감률 추정기법의 실용성 평가)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • The aim of this study was to confirm the improvement of efficiency for temperature estimation at 0600 and 1500 LST by using a simple method for estimating temperature lapse rate modulated by the amount of clouds in comparison with the case adopting the existing single temperature lapse rate ($-6.5^{\circ}C/km$ or $-9^{\circ}C/km$). A catchment of the 'Hadong Watermark2,' which includes Hadong, Gurye, and Gwangyang was selected as the area for evaluating the practicality of the temperature lapse rate estimation method. The weather data of 0600 and 1500 LST at 12 weather observation sites within the catchment were collected during the entire year of 2015. Also, the 'sky condition' of digital forecast products of KMA in 2015 ($5{\times}5km$ lattice resolution) were overlapped with the catchment of the 'Hadong Watermark2,' to calculate the spatial average value within the catchment, which were used to simulate the 0600 and 1500 LST temperature lapse rate of the catchment. The estimation errors of the temperatures at 0600 LST were ME $-0.39^{\circ}C$ and RMSE $1.45^{\circ}C$ in 2015, when applying the existing temperature lapse rate. Using the estimated temperature lapse rate, they were improved to ME $-0.19^{\circ}C$ and RMSE $1.32^{\circ}C$. At 1500 LST, the effect of the improvements found from the comparison between the existing temperature lapse rate and the estimated temperature lapse rate were minute, because the estimated lapse rate of clear days is not very different from the existing lapse rate. However, the estimation errors of the temperatures at 1500 LST during cloudy days were improved from ME $-0.69^{\circ}C$, RMSE $1.54^{\circ}C$ to ME $-0.51^{\circ}C$, RMSE $1.19^{\circ}C$.

Assessing removal effects on particulate matters using artificial wetland modules (인공 습지 모형을 활용한 습지의 미세먼지 저감 효과)

  • Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • To assess the wetland systems' capability to reduce fine dust, we used an artificial wetland module of small-sized greenhouse (70cm W × 70cm L × 60cm H) which creates a closed system. Experiment was performed twice using four species in each experiment. Non-plantation, one species, or two species condition was created in each mesocosm. We measured air quality, primarily PM2.5 and PM10 at the initial open mesocosms and 1hr later since mesocosms were closed. The dry weight of vegetation was measured at the 2nd experiment. The decreased amount of PM2.5 and PM10 was 13.7±1.3 and 13.2±1.3 ㎍·m-3hr-1 in wetland condition and 15.0±1.4 and 13.8±1.5 ㎍·m-3hr-1 in dryland condition, respectively. In 2nd experiment, the decreased amount of PM 2.5 and PM 10 in wetland condition was 13.7±1.3 and 9.2±1.5 ㎍·m-3hr-1, 15.0±1.4 and 8.8±1.4 ㎍·m-3hr-1 in dryland condition, respectively. Wetland showed higher removal effect due to its high productivity leading to more effective absorption of particulate matter. Furthermore, the aquatic characteristics of wetland system and high humidity helped purifying the air quality. This can be seen as another value of wetlands, which can be presented as one of the solutions to the problem of fine dust.

Characteristics of Membrane Permeability on the Separation of Solid in a Liquid Livestock Manure (축분액비의 고액분리에 있어서 분리막의 투과특성)

  • 황명구;차기철;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A lab-scale MF membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and quality of permeate (liquid livestock manure) in the separation of solid-matters using membrane. Experiment was divided three filtration type such as follows; continuous filtration, gravity filtration, and intermittent filtration. As a result of experiment, flux 1 LMH was maintained for 7days, and trans-membrane pressure(TMP) was increased gradually under 10cmHg, but it was increased immediately after 10cmHg, respectively. However, the flux was increased, the Tmax was decreased exponential more and more. During the pure-flux test, most of the fouling of membrane was reversible. At the gravity filtration, permeate could be obtained as 1.75 LMH for 3.5days without any other electronic pressure. As an investigation of membrane surface, this study could be decided that the reason of fouling at the lower flux (Run 1 and 2) was attached matters in membrane surface, but at the higher flux (Run 4-6) was concentration polarization.

  • PDF

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

Monitoring of Nitrogen and Phosphorus from Submerged Plants in Boknae Reservoir around Juam Lake (주암호 복내 저수구역내 침수 자생식물의 질소 및 인 모니터링)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Choi, Ik-Won;Park, Jong-Hwan;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • BACKGROUND: Eutrophication occurs occasionally in reservoirs around lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during rainy season. To improve water quality of water supply source in Boknae reservoir around Juam lake, characteristics of nutrient(N, P) uptake and release by submerged plants were investigated. METHODS AND RESULTS: In order to establish the management plan of submerged plants in Boknae reservoir around Juam lake, water level, rainfall, flooding and non-flooding areas, biomass of dominant plants, contents of nitrogen and phosphorus were investigated during 7 months(August, 2010 through February, 2011). Dominant plants were Miscanthus sacchariflorus(MISSA) and Carex dimorpholepis(CRXDM) in Boknae reservoir. Total plant area of Boknae reservoir in August, 2010 was 987,872 $m^2$. In Boknae reservoir, flooding occurred from August until February caused by rainfall during rainy season. The total amounts of nitrogen and phosphorus uptakes by MISSA were 247 and 22 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus uptakes were 11,340 and 1,231 kg/total reservoir area, respectively. The total amounts of nitrogen and phosphorus residues by MISSA were 34 and 11 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus residues were 491 and 68 kg/total reservoir area, respectively. CONCLUSION(S): Total amounts of nitrogen and phosphorus releases in Boknae reservoir were 12,212 and 1,324 kg/total reservoir area, respectively. The results demonstrate that total nitrogen and total phosphorus in water were strongly influenced by submerged plants. Therefore, management plan for submerged plants during rainy season will be needed to improve water quality of water supply source in Boknae reservoir around Juam lake.

Characteristics of Subsurface Movement and Safety of the Songsanri Tomb Site of the Baekje Dynasty using Tiltmeter System (경사도변화 계측을 통한 백제 송산리 고분군의 지하 벽체거동특성과 안정성)

  • 서만철;박은주
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.191-205
    • /
    • 1997
  • Measurements on subsurface movement of the Songsanri tomb site including the Muryong royal tomb was conducted using a tiltmeter system for the period of 15 months form July 7, 1996 to September 30, 1997. Two coordinate tilt monitoring data shows the biggest movement rate of 2.3mm/m/yr toward south in the frontal wall(N-S tilt) of the Muryong royal tomb. Southward tilting of bricks above the southern fire place in the western wall of the Muryong royal tomb is a proof of southward tilting of the royal tomb since its excavation in 1971. The eastern wall of the Muryong royal tomb is also tilting toward inside the tomb with the rate of 1.523mm/m/yr. Furthermore, tilting rate of wall increases twice in rainy season. It is interpreted tbat infiltration of water into the tomb and nearby ground in rainy season results in dangerous status for the safety of tomb structure. On the whole, normal component tilting of the walls of the 5th tomb is large than its shear component. It shows a small displacement toward one direction without no abrupt change in its direction and amount of tilting. The tilting rate of walls of the 6th tomb is about 8.8mm/m/yr in the dry season which is much bigger than those of other tombs in rainy season. Deformation events of walls of the tombs are closely related to amount of precipitation and variation of temperature. In comparison with different weather conditions, tilting is much bigger during the period of rainy weather than sunny weather. It is interpreted that rainwater flew into the turm through faults and nearby ground. High water content in nearby ground resulted strength of ground. The tilting event of walls shows a hysterisis phenomenon in analysis of temperature effect on tilting event. The walls tilt rapidly with steep rising of temperature, but the tilted walls do not come back to original position with temperature falling. Therefore, a factor of steep increase of the temperature must be removed. It means the tomb have to be kept with constant temperature. The observation of groundwater level using three boreholes located in construction site and original ground represented that groundwater level in construction site is higher than that of original ground during the rainy season from the end of June to August. It means that the drainage system of the Muryong royal tomb is worse than original ground, and it is interpreted that the poor drainage system is related to safety of tomb structure. As above mentioned, it is interpreted that artificial changes of the tomb environment since the excavation, infiltration of rainwater and groundwater into the tomb site and poor drainage system had resulted in dangerous situation for the tomb structure. According to the result of the long period observation for the tomb site, it is interpreted that protection of the tomb site from high water content should be carried out at first, and the rise of temperature by means of the dehumidifier inside the tomb must be removed.

  • PDF

Effects of Well Parameters Analysis Techniques on Evaluation of Well Efficiency in Step-Drawdown Test (단계양수시험 해석시 우물상수 산정 방법이 우물효율에 미치는 영향)

  • Chung, Sang-Yong;Kim, Byung-Woo;Kim, Gyoo-Bum;Kweon, Hae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • Step-drawdown tests were conducted at four pumping Wells, two in porous media and two in fractured rocks, respectively. In general, P = 2.0 suggested by Jacob (1947) is applied to porous media and fractured rocks in terms of drawdowns of step-drawdown test. In an attempt to review problems of linear model (Jacob's graphic method) in interpreting the step-draw down test, the outcomes of well parameters (aquifer loss coefficient (B), well loss coefficient (C) and well loss exponent (P)) calculated from linear and nonlinear model (Labadie and Helweg's least-squares method) were compared and analyzed. The values of C and P calculated from linear and nonlinear models differed according to permeability of aquifer and the conditions of pumping well. The value C obtained from nonlinear models in porous media and fractured rocks is about $10^0{\sim}10^{-2}$ and $10^{-3}{\sim}10^{-6}$ times lower than in their linear models, respectively. The value P of porous media obtained from nonlinear model ranged from 2.123 to 2.775, while it ranged from 3.459 to 5.635 for fractured rocks. In case of nonlinear model, well loss highly depends on the value P. At this time, well efficiencies calculated from linear and nonlinear models were $1.56{\sim}14.89%$ for porous media and $8.73{\sim}24.71%$ for fractured rocks, showing a significant error according to chosen models. In nonlinear model, it was found that the regression analysis using the least squares method was very useful to interpret step-drawdown test in all aquifer.

Analysis of Aquifer Test Data in Fractured Aquifers and the Application of the Generalized Radial Flow (균열암반에서의 양수시험자료 해석과 일반 방사상 유동모델의 적용성 연구)

  • Seong Hyeonjeong;Kim Yongie;Lee Chul-Woo;Kim Kue-Young;Woo Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.177-185
    • /
    • 2005
  • Data from 122 pumping tests were obtained from 100 boreholes in granites, volcanic rocks, metamorphic rocks, and Cretaceous and Tertiary sedimentary rocks, and then were analyzed using AQTESOLV. Results from 86 of the 122 tests ($71\%$) have an analytical solution corresponding to Theis (1935), Cooper-Jacob (1946), Papadopulos-Cooper (1967), Hantush (1962), Moench (1985), or Hantush-Jacob (1955), whereas the remaining 36 results ($29.5\%$) do not correspond to any of the analytical methods. Of the 86 results, only 17 match the Theis and Cooper-Jacob methods, indicating that the basic methods fer pumping test analysis are useful far only $14\%$ of the total data. This suggests that analytical solutions derived using leaky boundary conditions are appropriate for the analysis of pumping test data in fractured aquifers in this study. Furthermore, the results show the importance of carefully selecting an appropriate model for the analysis of pumping test data. Results from the 122 pumping tests were also analyzed using the GRF model. Using the Barker method, the results show that 77 of the 122 tests ($63\%$) have dimensions ranging between 1.1-2.9. Of these 77 solutions, ($39(44.2{\%})$) have a fractional dimension of 1.1-1.9, ($26(6.5{\%})$) show 2-dimensional radial flow also applicable to the Theis method, and ($38(49.3{\%})$) have dimensions of 2.1-2.9. The results show that groundwater flows according to a fractional flow dimension in fractured aquifers.

Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields (논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성)

  • Kim, Jae-Ok;Shin, Hyun-Sang;Yoo, Ji-Hyun;Lee, Seung-Heon;Jang, Kyu-Sang;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.253-263
    • /
    • 2011
  • This study was conducted to gain preliminary data for restoration and management of constructed small-scale ponds in paddy fields through analysis of their physicochemical and biological properties. A field survey was performed at 13 small-scale ponds located in paddy fields from August 2009 to October 2010. Structural properties, water quality, soil characteristics and fish fauna were measured. Results showed that small-scale ponds without frames might lose their function over time because of crumbling walls. Therefore, it is necessary for these ponds to have frames for soil protection and sustainable maintenance. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentration were higher than the water quality standard for agricultural water in small-scale ponds. In particular, TN concentration was 8.03 mg $L^{-1}$ and over 8 times the water quality standard because of the presence of livestock such as cows and pigs in the study areas. Sand, organic matter and available phosphorus contents of soil in small-scale ponds was 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$ and 12.8${\pm}$7.59 mg $kg^{-1}$, respectively indicating that sand and available phosphorus contents were suitable for plants in small-scale ponds, but organic matter contents was somewhat low in newly constructed small-scale ponds, and would take some time to stabilize for plant growing. Fish fauna was not diverse with only 4 species at all sites surveyed. Collected fishes share a common feature that they all inhabit paddy fields or canals with shallow water depth. In this study, all ponds were not linked to the streams and canals around them. It appears that connection to adjacent streams was the major factor controlling fish fauna in small-scale ponds. The results of statistical analysis were classified into three groups. Factor 1 was 26.3%, which shows a structural properties such as area and depth of small-scale pond. As for factor 2, it appears on 20.1%, showing water quality like a TP, suspended solids (SS) and COD. Small-scale ponds were classified into three groups by factor scores. Group I consisted of 6 small-scale ponds, which were larger than the others. Group III had higher water quality than the others. We conclude that the most important points to be considered for restoration and management of small-scale ponds is connection with adjacent streams or ditches and depth and size of the small-scale pond.