Journal of the Korean Society for Aeronautical & Space Sciences
/
v.50
no.3
/
pp.215-222
/
2022
The purpose of air traffic flow management is to balance demand and capacity in the national airspace, and its performance relies on an accurate capacity prediction of the airport or airspace. This paper developed a regression model that predicts the number of aircraft actually departing and arriving in a terminal maneuvering area. The regression model is based on a boosting ensemble learning algorithm that learns past aircraft operational data such as time, weather, scheduled demand, and unfulfilled demand at a specific airport in the terminal maneuvering area. The developed model was tested using historical departure and arrival flight data at Incheon International Airport, and the coefficient of determination is greater than 0.95. Also, the capacity of the terminal maneuvering area of interest is implicitly predicted by using the model.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
This study tries to grasp the factor that affects the acceptance of beacon as an O2O marketing tool. This study examined whether there is a difference between beacon accepter as a means of marketing communication and non-accepter in terms of related variables. As a result, there were significant differences between beacon perceiver and non-perceiver in 'smartphone usage' and 'brand consciousness'. In order to understand the predictive variables influencing beacon acceptance as a means of marketing communication, this study used 'perceiving beacon as a marketing communication media' as a dependent variable to perform logistic regression analysis. As a result of the analysis, it was found that 'smartphone usage' and 'brand consciousness' were the predictive variables affecting beacon perceiving. This study tried to analysis the results in the viewpoint of perceived usefulness and ease-of-use which were insisted by TAM.
Koo, Kang Min;Han, Kuk Heon;Yum, Kyung Taek;Jun, Kyung Soo
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.223-223
/
2018
취수원에서 정수장과 배수지를 거쳐 수용가에 이르기까지 공급되는 급수량을 결정하는데 있어 각 수용가별 물 사용 패턴은 수요량을 예측하여 취수량을 결정하는데 있어 매우 중요한 지표이다. 생활용수 추정은 용도별(가정용, 상업용, 공업용 등)로 분류하여 경향성이 나타날 수 있도록 과거 사용실적을 바탕으로 장래 용도별 사용량을 추정한다. 이는 경험을 바탕으로 한 것으로 일반적으로 시계열 모형을 이용하는데 수요예측의 실패 가능성이 높으며 효율적인 방법이라 할 수 없다. 이에 본 연구에서는 최근 통신기술의 발달로 양방향 통신이 가능한 AMI(Advanced Metering Infrastructure, 원격검침인프라)센서를 영종도 112블록의 528개의 수용가에 설치하였다. AMI는 스마트 미터에서 측정한 데이터를 원격 검침기를 통해 물 사용량을 자동으로 계측할 수 있다. AMI 데이터를 이용하여 영종도 112블록의 운북동과 운서동의 각 용도별, 요일별, 그리고 도심지와 농가의 실시간 물 사용 패턴을 분석하였다. 분석 결과 운북동과 운서동의 물 사용 패턴은 비슷한 경향을 보이는 것으로 보이나 도시화된 운서동에 비해 운북동의 물사용량이 상대적으로 적고 첨두사용량의 발생시간 또한 빠른 것으로 나타났다. 또한 가정용과 공공용의 경우 시간별 물 사용량이 요일에 따라 일정한 경향이 있으나 상업용과 공업용은 일정한 사용량을 보였다. 향후 112블록의 관망해석에 실시간 물사용 패턴을 적용하여 효율적으로 급수량 결정을 할 수 있을 것으로 사료된다.
Recently, enterprise storage systems that require large-capacity storage devices to accommodate big data have used large-capacity flash memory-based storage devices with high density compared to cost and size. This paper proposes a high-efficiency life prediction method with slope descent to maximize the life of flash memory media that directly affects the reliability and usability of large enterprise storage devices. To this end, this paper proposes the structure of a matrix for storing metadata for learning the frequency of defects and proposes a cost model using metadata. It also proposes a life expectancy prediction policy in exceptional situations when defects outside the learned range occur. Lastly, it was verified through simulation that a method proposed by this paper can maximize its life compared to a life prediction method based on the fixed number of times and the life prediction method based on the remaining ratio of spare blocks, which has been used to predict the life of flash memory.
ESS is an essential requirement for resolving power shortages and power demand management and promoting renewable energy at a time when the energy paradigm changes. In this paper, we propose a cost-effective ESS Peak-Shaving operation plan through load and solar power generation forecast. For the ESS operation plan, electric load and solar power generation were predicted through RMS, which is a statistical measure, and a target load reduction guideline for one hour was set through the predicted electric load and solar power generation amount. The load and solar power generation amount from May 6th to 10th, 2019 was predicted by simulation of load and photovoltaic power generation using real data of the target customer for one year, and an hourly guideline was set. The average error rate for predicting load was 7.12%, and the average error rate for predicting solar power generation amount was 10.57%. Through the ESS operation plan, it was confirmed that the hourly guide-line suggested in this paper contributed to the peak-shaving maximization of customers.Through the results of this paper, it is expected that future energy problems can be reduced by minimizing environmental problems caused by fossil energy in connection with solar power and utilizing new and renewable energy to the maximum.
Lipase was separated using reverse mlcelles in a spray column. The 50 mM AOT-Isooctane solution was used as reverse micellar solution for the extraction of lipase (crude containing 25% Protein). Ionic strength was controlled by KCl(0.1M KCl for extraction, 0.5M KCl for back exlractlon). Acetate buffer and phosphate buffer were used for control of pH. The efficiencies of extraction and stripping were 30% and 50%. An increase of circulation did not change the efficiency of extraction in forward extraction. The optimum flow rate was around 0.10ml/sec.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.1295-1298
/
2004
국내 정보화 서비스 수준의 향상과 멀티미디어 유형의 자료의 증가로 초고속 광 네트워크 기술에 대한 관심이 높아지고 있다. 한편, 국방정보통신망은 ATM 기술을 기반으로 한 백본 망을 구성하여 운영 중이나 최근에는 매년 평균 1.5배 규모로 통화량이 증가하고 있는 추세이다. 이에 따라 수년 내에 현 백본 망에서 수용할 수 있는 통화량의 한계점에 도달할 것으로 예측되어 백본구조의 개선이 필요한 시점이다. 따라서 본 논문에서는 초고속 광 네트워크 기술을 이용하여 국방정보통신망의 백본구조를 개선하는 방안을 제시하고자 한다. 이를 위하여 최신 광 전송 및 네트워크 기술을 살펴보고, 실행 가능한 2가지 대안을 제시한다. 이어서 이들 대안들에 대한 장점, 제한사항 그리고 정량적인 비용분석을 통하여 최적안을 제안한다. 그 결과 국방정보통신망의 5년간 증설 및 운용유지 비용에서 28% 정도를 절감하면서 통화량 수용능력을 최소 1.7배 이상 확대하여 차후 망의 증설에 대비한 유연성을 확보하는 효과가 기대된다.
The runway occupancy time of landing aircraft is an important factor in determining runway capacity. The purpose of this study is to suggest improvement measures for runway occupancy time to improve the operation of existing airports. In order to derive improvement measures, a comparative analysis was conducted on the effectiveness of improvement using aircraft operation status data for specific days at the case airport. The FAA REDIM model was used to analyze the improvement plan, and the improvement application function of the model was used to confirm the effect of improving runway capacity by adding a rapid escape taxiway to an airport without a rapid escape taxiway. This study's approach can be applied to the derivation of runway improvement measures and preliminary prediction of effectiveness, and it presents cases that can be applied to future airport construction projects or airport improvement projects.
KSCE Journal of Civil and Environmental Engineering Research
/
v.36
no.3
/
pp.521-528
/
2016
The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.