This study attempts to establish a precise forecast model for the container inventory demand of shipping companies through forecasts based on equipment type/size, ports, and weekly system dynamics. The forecast subjects were Shanghai and Yantian Ports. Only dry containers (20, 40) and high cubes (40) were used as the subject container inventory in this study due to their large demand and valid data computation. The simulation period was from 2011 to 2017 and weekly data were used, applying the actual data frequency among shipping companies. The results of the model accuracy test obtained through an application of Mean Absolute Percentage Error (MAPE) verified that the forecast model for dry 40' demand, dry 40' high cube demand, dry 20' supply, dry 40' supply, and dry 40' high cube supply in Shanghai Port provided an accurate prediction, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Shanghai Port was otherwise verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model for dry 40' high cube demand and dry 20' supply in Yantian Port was accurate, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Yantian Port was generally verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model in this study also had relatively high accuracy when compared with the actueal data managed in shipping companies.
Ku, Bon-Suk;Baek, Young-Sik;Song, Kyung-Bin;Hong, Dug-Hun
Proceedings of the KIEE Conference
/
2001.05a
/
pp.52-54
/
2001
전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력 시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 특수일의 전력 수요 예측의 정확도가 평일 예측에 비해 낮으며 특히, 토요일 또는 월요일에 특수일이 오는 경우 예측의 정확도가 낮아지는 경향이 있다. 따라서, 찬 논문은 퍼지 선형회귀 분석법과 상대계수법을 병행하여 예측함으로써 특수일 수요 예측의 정확도를 개선하는 방법을 제시한다.
본 연구를 통하여 전력계통의 송변전 계획에 필요한 장기 지구별 수요예측 산법을 제안하였다. 소규모 지구의 수요예측을 위한 중회귀 모형 도입시 단순한 다항식 회귀모형만으로는 장기예측을 하는데 한계가 있으므로 다항회귀 과정을 변형하거나, 새로운 기능을 보완하여 예측정확도를 높이려는 시도가 수행 되어왔다. 본 논문에서는 장기 예측시 나타나는 미래의 예측 수요의 과도한 변화를 감소시켜 예측 정확도를 개선할 수 있는 수평년도수요를 도입하였으며, 종래 추세 분석에서 난점으로 지적되어 온 변전소의 신설 및 폐지에 따른 수요이전으로 야기되는 예측의 불안정성을 개선하였다. 제안한 산법을 검증하기 위하여 우리나라 실계통에 적용하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.234-241
/
2021
By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.
Demand forecasting is one of the most critical tasks in defense logistics, because the failure of the task can bring about a huge waste of budget. Up to date, ROK-MND(Republic of Korea - Ministry of National Defense) has analyzed past component consumption data with time-series techniques to predict each component's demand. However, the accuracy of the prediction still needs to be improved. In our study, we attempted to find consumption pattern using data mining techniques. We gathered an 18,476 component consumption data first, and then derived diverse features to utilize them in identification of demanding patterns in the consumption data. The results show that our approach improves demand forecasting with higher accuracy.
전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력 수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 평일과는 다르게 특수일의 전력 수요예측은 평균 5%를 상회하는 수준으로 예측의 정확도가 평일 예측에 비해 크게 낮은데 이유는 특수일이 평일에 비하여 부하의 크기가 다소 낮게 나타나고 특수일 마다 계절적인 차이가 있으며 각각의 특수일 마다 고유한 부하의 특성이 있으므로 과거 데이터를 이용할 때 동일 특수일을 이용하게 되며 따라서 평일과는 다르게 일년 단위로 과거 데이터 값들이 취득되므로 오차율이 커진다. 따라서 데이터들을 퍼지화하여 선형계획법을 수행하여 평균 $2{\sim}3%$ 정도의 우수한 결과를 도출한 바 있다. 본 논문에서는 퍼지 선형회귀분석법을 이용한 예측 기법에 최소자승법을 도입하여 특수일 전력 수요예측의 정확도를 개선하였다.
In this study, to improve the accuracy of forecast of heat demand in the district heating system, this study applied heat demand performance among the main factors of district heating demand forecast in Pankyo area as the heat sales information of the user facility instead of existing heat source facility heat supply information, and compared the existing method with the accuracy based on the actual value. As a result of comparing the difference of the forecasts values of the existing and changed methods based on the performance values over the one week (2018.01.08 ~ 01.14) during the hot water peak, the relative error decreased from 7% to 3% The relative error between the existing and revised forecasts was 9% and 4%, respectively, for the five-month cumulative heat demand from February to February 2018, Also, in case of the weekend where the demand of heat is differentiated, the relative error of the forecasts value is consistently reduced from 10% to 5%.
수요예측은 적정 재고를 유지하기 위해 선행되어야 할 중요한 부분이라 할 수 있다. 수요예측의 정확도 향상이 적정한 재고를 유지하기 위한 토대가 된다. 하지만 수요예측을 어렵게 만드는 주요 원인 중 하나인 간헐적인 수요는 기존 시계열 기법으로 예측하는데 있어 어려움이 크다. 본 연구에서는 인공지능의 한 기법인 인공신경망을 적용하여 간헐적 품목에 대한 수요예측을 실시하였다. 6개의 기법을 통해 실험을 실시한 결과 인공신경망이 가장 오차가 적은 우수한 결과를 나타냈다.
Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
The Journal of Bigdata
/
v.5
no.2
/
pp.17-27
/
2020
District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.