• Title/Summary/Keyword: 수신 신호 강도

Search Result 162, Processing Time 0.031 seconds

Speech Reinforcement Based on Soft Decision Under Far-End Noise Environments (원단 잡음 환경에서 Soft Decision에 기반한 새로운 음성 강화 기법)

  • Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we propose an effective speech reinforcement technique under the near-end and the far-end noise environments. In general, since the intelligibility of the far-end speech for the near-end listener is significantly reduced under near-end noise environments, we require a far-end speech reinforcement approach to avoid this phenomena. Specifically, based on the estimated background noise spectrum of the near-end, we reinforce the far-end speech spectrum by incorporating the more general cases under the near-end with background noise. Also, we propose the novel approach to reinforce the actual speech signal except for the noise signal in the far-end noisy speech signal. The performance of the proposed algorithm is evaluated by the CCR (Comparison Category Rating) test of the method for subjective determination of transmission quality in ITU-T P.800 under various noise environments and shows better performances compared with the conventional method.

A Handover Algorithm Using Fuzzy Set Theory (퍼지 이론을 이용한 핸드오버 알고리즘)

  • 정한호;김준철;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.824-834
    • /
    • 1993
  • In cellular mobile communication systems, if the size of a cell is decreasing for economic utilization of frequency resources, frequent handovers may be requested because the time a mobile stays in a cell is decreasing. In general the measured parameters to decide handover including RSSI, BER, and the distance between mobile station and base station, are usually incorrect and handover decision using single parameter insufficient. Therefore, the better handover algorithm should take over the problems of this uncertain measurements, and make the decision more robust and flexible by the consideration of all those decision parameters at the same time. We propose a novel handover algorithm based the multicriteria decision making, in which those parameters are participated in the decision process using aggregation function in fuzzy set theory. As a simulation results, the overall decision making is more reliable and flexible than the conventional method using only one parameter, RSSI in terms of call force ratio, and handover request ratio.

  • PDF

Implementation of Real-time Sound-location Tracking Method using TDoA for Smart Lecture System (스마트 강의 시스템을 위한 시간차 검출 방식의 실시간 음원 추적 기법 구현)

  • Kang, Minsoo;Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.708-717
    • /
    • 2017
  • Tracking of sound-location is widely used in various area such as intelligent CCTV, video conference and voice commander. In this paper we introduce the real-time sound-location tracking method for smart lecture system using TDoA(Time Difference of Arrival) with orthogonal microphone array on the ceiling. Through discussion on some models of TDoA detection, cross correlation method using linear microphone array is proposed. Orthogonal array with 5 microphone could detect omni direction of sound-location. For real-time detection we adopt the threshold of received energy for eliminating no-voice interval, signed cross correlation for reducing computational complexity. The detected azimuth angles are processed using median filter for lowering the angle deviation. The proposed system is implemented with high performance MCU of TMS320F379D and MEMs microphone module and shows the accuracy of 0.5 and 6.5 in degree for white noise and lectured voice, respectively.

A Reliable Data Capture in Multi-Reader RFID Environments (다중 태그 인식 기반의 신뢰성 있는 데이터 수집 환경)

  • Lee, Young-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4133-4137
    • /
    • 2011
  • Reliable Multi-Reader RFID identification is one of issues in Multi-Reader RFID realization program in recent. And the Multi-Reader RFID reader has difficulty to obtain reliable data in data capture layer. The reason is that unreliable readings such as a false positive reading and a false negative reading and missed readings can happen by reader collision problems, noise, or the mobility of tagged objects. We introduce performance metrics to solve these reader problems. We propose three solutions the Minimum Overlapped Read Zone (MORZ) with Received Signal Strength Indicator (RSSI), the Spatial-Temporal Division Access (STDA) method, and double bigger size of tags attached on the object. To show the improvement of the proposed methods, we calculate tag's successful read rates in a smart office, which consists of Multi-Reader RFID systems.

Analysis of array invariant-based source-range estimation using a horizontal array (수평 배열을 이용한 배열 불변성 기반의 음원 거리 추정 성능 분석)

  • Gu, Hongju;Byun, Gihoon;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • In sonar systems, the passive ranging of a target is an active research area. This paper analyzed the performance of passive ranging based on an array invariant method for different environmental and sonar parameters. The array invariant developed for source range estimation in shallow water. The advantages of this method are that detailed environmental information is not required, and the real-time ranging is possible since the computational burden is very small. Simulation was performed to verify the algorithm. And this method is applied to sea-going experimental data in 2013 near Jinhae port. This study shows the performance of ranging for source orientation, transmission signal length, and length of a receiver through numerical simulation experiments. Also, the results using nested array and uniform line arrays are compared.

Correlation Analysis between BLE-based RSSI and SoC Internal or Local Temperature (BLE 기반 RSSI와 SoC 내부 또는 국부 온도의 상관관계)

  • Kim, Seong-Chang;Lee, Min-Jeong;Oh, Sung-Bhin;Kim, Jun-Su;Kim, Jin-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.89-91
    • /
    • 2022
  • Wireless sensor networks(WSN), which are mainly used for indoor positioning, rely on the accuracy of RSSI. This RSSI is sensitive to several factors that cause interference, and there are foreign studies showing that temperature has a large effect on RSSI in indoor/outdoor environment among several factors. The temperature of the indoor space is uneven due to heat sources or air cooling systems indoors, and temperature changes frequently occur at certain locations. In particular, in case of an indoor fire, the accurate positioning system is required to guide an evacuation route, but a high temperature is locally formed due to a fire around the receiver, so the RSSI value could be influenced. In this paper, the effect on RSSI is studied by analyzing the correlation between SoC internal/local temperature and RSSI.

  • PDF

Efficient Intermediate Node mobility Management Technique in CCN Real-time Streaming Environment (CCN 실시간 스트리밍 환경에서 효율적인 중간노드 이동성 관리 기법)

  • Yoon-Young Kim;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1073-1080
    • /
    • 2023
  • The development and speed improvement of the Internet network, and the development of many platforms based on it, have brought about a rapid expansion of production and consumption of various contents. However, the existing IP-based Internet system cannot efficiently cope with such an urgent increase in data. Accordingly, an alternative called the CCN(Contents Centric Network) has emerged, enabling more efficient data transmission and reception centered on content rather than host. In this paper, we will deal with the mobility of intermediate nodes in CCN real-time streaming service, which is one of the major research fields of CCN, and minimize network overload through more efficient path switching through RSSI detection. In other words, by improving the method of selecting and switching a spare path when an intermediate node located between the requester(consumer) and the provider moves, a mechanism for managing data transmission is not interrupted and unnecessary load due to route switching does not occur in the network.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Analysis of Ka Band Satellite Link Budgets and Earth Station G/T in Korea Rainfall Environment (국내 강우 환경에서 Ka 밴드 위성 링크 버짓 및 지구국 G/T 분석)

  • Choi, Hyeong-Jae;You, Kyoung-A;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • In geostationary satellite communications, which are widely used for broadcasting and communication, there is a path loss where the signal power on the path is largely reduced. It is important to consider rain attenuation when calculating link budget because the Ka band frequency is vulnerable to rain attenuation. In this study, rainfall trends were analyzed by using rainfall data from the year 2000 in four regions of Korea (Seoul, Incheon, Busan, Jeju) and the rainfall attenuation was calculated. This was used to analyse the satellite link budget and receiving performance for the down-link of the korea satellite COMS. In this study, the calculated G/T for the rainfall intensity of 0.5% per year using the rainfall data for 18 years increased by approximately $8.5dBK^{-1}$ compared to the ITU's zone-K rain model, and decreased by approximately $1dBK^{-1}$ compared to the precipitation data for 13 years from the TTA(Korea Telecommunications Technology Association). The results of this study can be used for the design of G/T in domestic-installed satellite ground station.