• Title/Summary/Keyword: 수신기배열

Search Result 82, Processing Time 0.017 seconds

Broadband Seismic Exploration Technologies via Ghost Removal (도깨비파 제거를 통한 광대역 탄성파 탐사 기술)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.183-197
    • /
    • 2018
  • In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.

Performance Analysis of Beam Steering Algorithm According to the Signal Separation (신호 이격도에 따른 빔 제어 알고리즘 성능 분석)

  • Yun, Seonhui;Oh, Jongchan;Kim, Jun O;Nam, Juhun;Choi, Sangwook;Ahn, Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1023-1030
    • /
    • 2014
  • Beam steering algorithms using array antenna are mainly used in such a manner as anti-jamming method. However, the performance is changed according to the position of signals despite the same number of signals and the same received power. In this paper, we analyzed the effect of the position relationship of the signals on the performance of the beam steering algorithms. Therefore, we defined 'signal separation' as the minimum angle of the interference signals and the desired signal, and analysed the relationship between the C/N0 performance of beam steering algorithms as LCMV/PM and the signal separation. For simulation, we set many GPS signals and jamming signals compared to the degrees of freedom. And changed the position and the height of the receiver in order to obtain various signal separation angles. In addition, we examined the effects of signal separation and JSR on the anti-jamming performance by applying the loss factors of the received power. Through the research, there is a tendency that the performance of beam steering algorithms is increased with the increase of the signal separation, and signal separation is more severely affecting on the anti-jamming performance compared to the number of signals and JSR.