• Title/Summary/Keyword: 수식모델링

Search Result 168, Processing Time 0.026 seconds

An Efficient Hardware-Based Simulation Method for Artificial Winds (하드웨어를 이용한 효율적인 인공풍 시뮬레이션 방법)

  • Lee, Nam-Kyung;Ryu, Kwan-Woo;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.633-638
    • /
    • 2006
  • In this paper, we present a simulation model for artificially generated winds which affect relatively restricted regions in comparison with natural winds. We first propose an artificial wind propagation model, and then propose an efficient way of calculating the effect of this wind model in the simulation environment. Through showing that our wind force calculation equation is similar to the typical intensity equation for illumination models, we can calculate the wind force indirectly by using the intensity equations for spotlights, and hence we can reduce the simulation time. Our method shows real-time capabilities, and thus can be used various real-time applications including computer games, virtual environments, etc.

Tacho Pulse Non-uniformity Effects on Pulse Count Method (타코펄스 불균일성으로 인한 펄스개수측정방법 영향성)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Pulse count method is the classical reaction wheel speed detection method. In this study, we represent the pulse count method as mathematical equations. Instead of rotation speed, we model the reaction wheel rotation through rotation angle during sampling periods. We verified the effectiveness of the proposed model by comparing the pulse counts variation and averaging method effects from the model and previous research results. Then, we add tacho pulse non-uniformity to this verified model, and examine the errors of pulse count method. We express the measurement error increasement due to non-uniformity as mathematical equations, and also shows the requirement of moving average numbers to offset the measurement errors.

A Study on the Application of BIM for Reinforcement Concrete Structural Work (철근 콘크리트 공사에서의 BIM 적용 연구)

  • Ahn, Jae-Hong;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.158-166
    • /
    • 2018
  • The application of the BIM for architectural and structural work accompanied many trials-and-errors on project based on BIM by this time Ten years have passed since BIM issued, but it is not activated. This study suggests ways to activate BIM for architectural and structural work. The reason for choosing the structure construction is as follows. Construction cost is a high proportion of structural construction cost. On the other hand, the number of related materials is small, and the first in the 3D modeling process is structure modeling. And build BIM-based Structural Database by quantity take-off. This study shows the applicability of BIM through practical cases. This study is expected to provide suggestion for the successful implementation of BIM-based projects.

Domain Selection Using Asymptotic Decider Criterion in Volume Modeling Based on Tetrahedrization (사면체 기반의 볼륨 모델링에서 점근선 판정기를 이용한 영역의 선택)

  • Lee, Kun;Gwun, Ou-Bong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.59-68
    • /
    • 2003
  • 3-D data modeling of a volumetric scattered data is highly demanded for geological structure inspection, environment visualization and supersonic testing. The data used in these area are generally irregularly scattered in a volume data space, which are much different from the structured points data (cuberille data) used in Marching cube algorithm. In this paper, first we explore a volume modeling method for the scattered data based on tetrahedral domain. Next we propose a method for solving the ambiguity of tetrahedral domain decision using asymptotic decider criterion. Last we implement a simple visualization system based on the proposed asymptotic decider criterion and compare it with a system based on sphere criterion. In deciding tetrahedral domain, sphere criterion considers only positional values but asymptotic decider criterion considers not only positional values but also functional values, so asymptotic decider criterion is more accurate on deciding tetrahedral domain than sphere criterion.

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.

Equivalent Parameter Modeling of Open Ring type DGS Resonator (분리된 링형 DGS 공진기의 등가 파라미터 모델링)

  • Mun, Seung-Min;Kim, Gi-Rae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1175-1180
    • /
    • 2014
  • In this paper, the open ring type DGS(Defected Ground Structure) resonator, applicable to MMIC(Monolithic Microwave Integrated Circuit), is proposed to improve phase noise characteristics of RF oscillator. This resonator is planar type, therefore, it easy to design miniaturrized., and takes relatively high Q value. Modeling the equivalent parameter of resonator is needed, when designing the RF oscillator with resonator. The mathematical method to solve the equivalent parameter of the resonator from the measured results of resonator is introduced in this paper. To verify the method, DGS resonator with 5.8 GHz center frequency is fabricated, for measuring characteristics and calculating the equivalent parameter. The result from this process is compared with the data of the ADS simulation, and as a result both were identical.

Electrical Modeling of Lithium-Polymer Battery (리튬폴리머 전지의 전기적 모델링)

  • Im, Jae-Kwan;Lim, Deok-Young;Windarko, Novie Ayub;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • Electrical modeling of lithium-polymer battery is very important for electric energy supply system. In this paper, electric equivalent circuit of lithium-polymer battery is proposed to simulate its dynamic characteristics. Maccor 8500 charge/discharge system is used to obtain the experimental data of lithium-polymer battery. Model parameters are calculated by using Matlab. This paper defines a R-C model for charging/discharging of battery and polynomial functions are used for OCV (Open Circuit Voltage) modeling. The proposed model is simulated with PSiM and then compared the simulation results with the experimental results to verify the validity of the proposed model.

Module-based Modeling Method of $3\Phi$ Phase-Controlled Rectifier System for DC Motor Drive under Matlab/Simulink environment (Matlab/Simulink 환경하에서 3상 위상제어 정류기-DC 전동기 구동시스템의 모듈별 모델링 기법)

  • 김상민;한우용;이창구;김성중
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2000
  • This paper presents the modeling method of $3\Phi$ phase-controlled rectifier for the DC motor drive in MATLAB/SIMULINK environment. This method has no need to extend the system mathematically and thus it's easy to integrate the various systems. The whole model consists of $3\Phi$ phase-controlled rectifier block, DC motor block and speed/current controller block. The simulation results show that the model outputs are almost similar to those of the real system and therefore that the presented method is suitable for the research of the closed-loop controlled power electronic systems.

  • PDF

Ride Quality Analysis Using Seated Human Vibration Modeling (시트-인체 진동 모델링을 이용한 승차감 해석)

  • Kang, Ju Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.194-202
    • /
    • 2015
  • In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.