• Title/Summary/Keyword: 수소-LPG

Search Result 80, Processing Time 0.021 seconds

Optimization of KOGAS DME Process From Demonstration Long-Term Test (KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발)

  • Chung, Jongtae;Cho, Wonjun;Baek, Youngsoon;Lee, Changha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME (DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구)

  • JAEHEE JEONG;WONJUN CHO;OCKTAECK LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

Fabrication of SnO2-TiO2-based Thick Films for Hydrocarbon Gas Sensors (탄화수소계 가스센서를 위한 SnO2-TiO2계 후막의 제조)

  • 정완영;박정은;강봉휘;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.721-729
    • /
    • 1991
  • SnO2-TiO2(Pt or Pd), as raw material for hydrocarbon gas sensors, was prepared by a coprecipitation method. The SnO2-TiO2-based thick film gas sensors were made by screen printing technique. The titanium dioxide synthesized was shown to be anatase structure from XRD peaks and was transformed to rutile structure between 700$^{\circ}C$ and 1000$^{\circ}C$. Titanium dioxide in SnO2-TiO2 thick films devices plays a very important role in the enhancement of the sensitivity to CH4 and C4H10. In the case of SnO2-TiO2(Pt) sensors, titanium dioxide that was rutile structure enhanced the sensitivity of the thick film to CH4. Platinum added to the raw powder at coprecipitation (as chloroplatinic acid VI hydrate) improved the gas sensitivity to hydrocarbon gases. Therefore, it is expected that the SnO2-TiO2(Pt) thick film sensors fabricated in this experiment could be put into practical use as LPG (primary component : C4H10 and C3H8) and LNG (primary component : CH4) sensors.

  • PDF

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

Determination of polycyclic aromatic hydrocarbons (PAHs) in used lubricating car oils (차량용 폐윤활유에 함유된 다환 방향족 탄화수소 (PAHs)의 분석)

  • Yoo, Kwang-Sik;Jyoung, Ji-Young;Jeong, Seon-Yi;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.339-348
    • /
    • 2003
  • Determination of some PAHs in used engine oils have been carried out by extraction of the components into acetonitrile followed by GC/FID and synchronous spectrofluorimetric technique. 7 PAHs, such as acenaphthene (Ace), anthracene (Anth), benzo(a)pyrene (BaP), chrysene (Chry), phenanthrene (Phen), fluoranthene (Ft), and perlyrene (Per) in used engine oil sample were able to determine separately by synchronous spectrofluorimetry. Calibration curves for those components were linear for the concentration range of 0.4~166 ppb PAHs with the corelation factor of 0.9985~0.9999. The peak areas produced by GC/FID split ratio program were used for the calibration curves of the other 8 PAHs. Detection sensitivity of the synchronous spectrofluorimetry seems to be 100 times more sensitive than GC/FID method. The total amount of PAHs in the used engine oil were 5.5 ng/g for LNG (bus), 10.5 ng/g for LPG(taxi), 92.2 ng/g for gasoline-passenger car, and 130 ng/g for diesel trailer, respectively.

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries (리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성)

  • Kwon, Ik-Hyun;Song, Myoung-Youp;Bang, Eui-Yong;Han, Young-Soo;Kim, Ki-Tae;Lee, Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.