• Title/Summary/Keyword: 수소 안전

Search Result 510, Processing Time 0.027 seconds

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

핵 융합로 구축재질용 Stainless Steel 304의 수소 누설거동 실험

  • Lee, Seok-Gwan;On, Yeon-Gil;Choe, Min-Sik;Lee, Ju-Ho;Park, Jae-Ung;Kim, Hui-Su;No, Seung-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.511-511
    • /
    • 2012
  • 핵 융합로는 고밀도, 고에너지 플라즈마에 지속적으로 노출되며 고열부하 및 중성자, 플라즈마 이온에 의한 물성변화에 대한 다양한 핵 융합로 구축 재질의 실험데이터가 요구된다. 특히 핵 융합 반응의 핵심연료인 삼중수소의 재질별 누설거동 특성은 삼중수소의 블랑켓에서의 증식율, 열 교환기 및 공급과 회수과정에서의 손실율, 저장, 취급 및 차폐 등의 계산에 활용되므로 핵 융합로의 안전성과 경제성 확보 측면에서 매우 중요하다. 따라서 핵 융합로 구축 재질 선정시 삼중수소의 누설거동 특성은 반드시 고려되어야 한다. 본 연구는 삼중수소 누설거동 특성 해석을 위한 기초실험으로, 수소동위원소를 사용하는 누설거동실험 장치를 설계 제작하여 누설 거동실험을 수행하였다. 누설 가스로는 수소를 사용하였고, 시편은 스테인레스 스틸(SUS-304)을 사용하였으며, 시편의 가열온도는 500, 600, 700, $800^{\circ}C$에서 각각 수소누설거동 실험을 실시하였다. 수소에 대한 SUS-304 재질의 permeability, diffusivity, solubility에 대한 실험 결과를 발표하고자 한다.

  • PDF

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

고체 수소를 이용한 군용 연료전지 차량

  • 이부윤
    • Journal of the KSME
    • /
    • v.44 no.1
    • /
    • pp.27-27
    • /
    • 2004
  • 미국 국방부 소속 육군차량사업부(National A Automotive Center)는 대체에너지를 이용한 군용 차량 개발을 위해 Michigan 주 Rochester Hills에 위치한 E Energy Conversion Devices(ECD) 사와 일부 기술 개발 에 대한 기술 제휴를 한다고 발표했다. 국방부는 태양전 지와 수소를 연료로 사용하는 대체에너지 차량을 개발하 기 위해 ECD에 1단계 연구에 필요한 연구비를 지원했다. 이번 연구에는 연료전지를사용한차량개발을위해 5 500,$\omega$0달러가 투자되는데, Texaco Ovollic Hydrogen S Systems(TOHC)의 고체 휴대용 수소 연료와 채충천 (refueling) 시스탬이 주요 개발 목표로 설정됐다. ECD의 역할은 최근 개발된 Toyota Prius에 시범 적으로 장착된 저압 고체형 수소 저장 시스템의 기술을 군용 차량에 알맞게 전환시키는 것이다. TOHC와 ECD가 개발한 고체형 수소 보관 시스댐은 고압을 요구하는 연료전지 차량의 수소 저 장 시스템이 갖고 있는 많은 문제점들을 해결할 수 있을 것으로 기대되는 연료전지를 이용한 엔진 개발 중 최신 기술이다. 특히 전투 상황에서 차량이 폭발하기 쉬운 수소 저장 탱크를 장착한 채 전 장으로간다는 것은적에게 노출 될 경우자살과마찬가지인 치명적인 피해를 입을수 있다. 이 프로젝트의 개요를 살펴보면, 수소 저장 시스템은 적어도 약 lOkg의 수소를 적은 용적 내에 낮은 압력에서 안전하게 고체 상태로 저장할 수 있다. 이 고체 저장 용기는 하루에 두 번 1.7kg의 수소를 10분 이내에 재급유할 수 있다. 수소는대부분고압가스형태나저온액체 형태로보관된다. 기체나액체 형태의 수소는 연료전 지에 사용되기에는 적합하지 않은 점이 많다. Ovonie 수소 저장 방법은 수소를 저압 고체 형태 ( (metal hydride)로 보관하는 방법으로, 고압 기체나 저온 액체가 갖고 있는 많은 문제점들을 해결 할수있다. 그림을 참조하면 고체 형태의 수소 보관 방법이 다른 보관 방법에 비교해 단위 체적당 최고 6배 많은수소질량을보관할수 있다. 이 고체 형태의 보관방법은수소가적절한합금과평형 압력 이 상의 환경에 놓일 경우 합금에 홉착되는 현상을 이용하고 있다. 수소를 흡수한 합금은 새로운 특성 을 가진 metal hydride로 변하게 된다. 이 과정 에서 열이 부산물로 발생한다. 반대로 수소를 metal hydride로부터 분리시키기 위해서는 합금을 가열해야 한다.

  • PDF

Investigation of Combustion Properties for Using Safe Hydrogen (안전한 수소 이용을 위한 연소특성치 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • For the safety design and operation of many gas process, it is necessary to know certain explosion limit, flash point, autoignition temperature (AIT) and minimum oxygen concentration of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. In this study for the safe handling of hydrogen, explosion limit and AIT of combustion properties for hydrogen were investigated. By using the literatures data, the lower and upper explosion limits of hydrogen recommended 4.0 vol% and 77.0 vol%. Also the AIT of hydrogen with ignition sources recommended $400^{\circ}C$ at the electrically heated crucible furnace (the whole surface heating) and recommended $640^{\circ}C$ at the local hot surface. The new equations for predicting the temperature and the pressure dependence of the explosion limits of hydrogen are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

Ignition Temperature of Hydrogen/Air Mixture by Hot Wire in Pipeline (열선에 의한 파이프라인내의 수소/공기 혼합기의 착화온도)

  • Kim, Dong-Joon
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • In order to improve safety for hydrogen network infrastructure, the ignition temperature by hot wire was investigated for different hydrogen compositions in pipelines. The result shows that minimum temperature for ignition decreased with decreasing hydrogen composition. The minimum temperature was confirmed at a hydrogen composition of approximately 10 vol.%. The one of the reasons is supposed that buoyancy force should generate the convection of gas mixture. It was also found that humidity had a little effect on ignition temperature, flame temperature.

A Study on the Explosion Characteristics of Hydrogen (수소의 폭발 특성에 관한 연구)

  • Oh, Kyu-hyung;Rhie, Kwang-won
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.228-234
    • /
    • 2004
  • It was discussed about explosion danger of hydrogen gas experimentally that could be happen during the handling and using. Hydrogen concentration was varied from 10 to 60 vol% for get the explosion characteristics of hydrogen and 5 kinds of cylindrical vessel were used to find the explosion characteristics of hydrogen according to the vessel volume. Initial pressure of hydrogen-air mixture was varied from 0.6 to 2 kg/cm2. Based on the experiment, explosion pressure was most high near the 30vol% of hydrogen and explosion pressure was increased slightly according to the increase of vessel volume but explosion pressure rise rate was decreased. Explosion pressure was increased linearly proportional to the initial pressure of gas mixture.

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

Evaluation of Time Dependent Tritium Concentration for Safety Analysis in Wolsong Tritium Removal Facility (월성 삼중수소 저장 시설 안전성 평가를 위한 시간에 따른 삼중수소 농도 평가)

  • 육대식;이건재;정흥석
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.539-543
    • /
    • 2003
  • The objective of this to improve the reliability of the safety evaluation code for Wolsong Tritium Removal Facility(WTRF) which is on the development for environmental assessment. To achieve this, tritium concentrations calculated in the Wolsong Units of this study are compared with that of the existing reference. As the result, the tritium concentration in each Wolsong nuclear power plant unit just before operating WTRF is 60.9Ci/kg, 36.3Ci/kg, 30.0Ci/kg, 26.5Ci/kg under the assumption that the WTRF begins operation in 2005, respectively. This result is almost same with that of the existing reference. But the reducing rate of tritium concentration in the moderator is faster than that of the reference result Finally it is expected to drop below 10Ci/kg after WTRF operation. And this result is also similar with that of the existing reference.

  • PDF