• Title/Summary/Keyword: 수소 몰분율

Search Result 26, Processing Time 0.026 seconds

A Numerical Study on the Characteristics of Combustion for Hydrogen/Liquid Fuel/Air Mixture (수소/액체연료/공기의 연소특성에 관한 수치해석적 연구)

  • 임복빈;백승원;김광선
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • 본 논문에서는 수소/액체연료/공기의 연소특성에 대해 CFD상용프로그램을 사용하여 수치해석을 수행하였다. 먼저 프로그램을 검증하기 위하여 수소/공기의 난류 비예혼합 화염에 대한 반응물과 생성물의 몰분율을 Barlow실험 결과와 비교하였고, X축 방향의 온도분포를 Flury의 실험 값과 비교하여 값이 물리적으로 근사함을 확인하였다. 혼합분율(Mixture Fraction)과 확률밀도함수(PDF)의 접근 방법을 이용하여 화염진단과 오염물질발생에 중요한 역할을 하는 중간 종들의 몰분율을 확인하였다. 수소/액체연료/공기에 대해서는 화염형성에 있어서 가장 중요한 연료와 산화제의 속도비 변화(100,10,1,0.1)로부터 산화제속도가 연료속도 보다 클 경우 고속 측인 산화제에 의해 연료의 확산이 지배되는 현상으로 인하여 화염의 온도분포가 최고가 됨을 확인하였다. 또한, 연소과정 중 발생하는 오염물질의 농도를 수치적으로 해석하여 최저의 오염농도를 가질 수 있는 속도 비를 찾아 낼 수 있었다. 수소/공기와 수소/액체연료/공기의 온도 장 비교를 통하여 수소/액체연료/공기의 혼합물이 대체에너지로서의 가능성을 확인하였다.

CFD Simulation of Pd-Ag Membrane Process for $CO_2$ Separation (이산화탄소 분리를 위한 Pd-Ag 분리막 공정의 CFD 모사)

  • Oh, Min;Park, Junyong;Noh, Seunghyo;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • In this study, for the flow of carbon dioxide/hydrogen mixture through a tubular type Pd-Ag membrane, hydrogen partial pressure, velocity profile, and concentration profile were simulated as a function of inlet flow rate using computational fluid dynamics (CFD) technique. The simulation results indicated that the mole fraction of carbon dioxide increased slowly in the longitudinal direction as the flow rate increased. In addition, the effects of inlet flow rate and the length of membrane on hydrogen recovery were investigated. At lower flow rate and for longer membrane, the hydrogen recovery was larger.

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용하는 프로판 분해에 의한 수소 생산)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-112
    • /
    • 2007
  • 유동층 반응기를 이용한 프로판의 촉매 분해는 $CO_2$를 방출하지 않고 수소를 생성하는 새로운 방식이다. 카본블랙을 이용한 프로판 분해는 메탄보다 상대적으로 분해가 잘되며, 같은 온도에서 전환률이 높기 때문에 수소 생성량이 더 많다. 촉매로 사용된 카본블랙은 반응 중 생성되는 탄소의 침적에도 불구하고 8시간 이상 촉매의 활성이 유지되어 전환율이 일정하게 유지되었다. 프로판 촉매 분해 실험은 상압에서 600 ${\sim}$ $800^{\circ}C$ 온도 변화 실험을 수행하였고, 가스 유속 변화는 2.0 ${\sim}$ $4.0U_mf$에서 실험 조건 변화에 따른 실험을 하였다. 온도, 유속 변화에 따른 생성 가스의 몰분율과 프로판 전환율을 분석하였다. 프로판 분해에 의해 생성된 기체는 수소뿐만 아니라 메탄, 에틸렌, 에탄, 프로필렌과 분해되지 않은 프로판이 배출되었다. 수소를 제외한 여타 가스들은 고온에서 실험을 할수록 몰비가 줄어들었다. 고온에서 프로판의 전환율과 수소 수득률이 증가하였다. 프로판 분해 실험 전후의 카본블랙 표면의 변화는 FE-TEM으로 관측하였다.

  • PDF

A Methodology for Assessing Risk from Released Hydrocarbon (탄화수소 누출로 인한 위험분석 평가 방법론 연구)

  • Keun-Won Lee
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.170-180
    • /
    • 1998
  • This study presents a method for calculating the concentration of hydrocarbon releases in enclosed areas using empirical equations of evaporation rate. The approach of the method is to estimate the hydrocarbon exposure concentration in the air under conditions assumed. A methodology for assessing risk was suggested to individual risk assessment to exposed workers or others by probit expressions. The toxicity criteria and available human exposure data were examined and guidelines for risk assessment suggested for benzene-air and toluene-air systems. The value of probit constants with mole fractions of lethal concentrations in a mixture of hydrocarbons and a non-toxic substance was predicted. The probit values calculated with mole fractions can be used to estimate guidelines to prevent toxicity within enclosed working areas.

  • PDF

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

Solvolysis of Anthraquinone-2-Carbonyl Chloride in Binary Solvent Mixtures (이성분 혼합용매계에서 염화 안트라퀴논-2-카르보닐의 가용매 분해반응$^{1,2}$)

  • Jong Pal Lee;Dae Dong Sung;Tae Sup Uhm;Ikchoon Lee;Se Chul Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.465-471
    • /
    • 1985
  • The rate constants for the solvolysis of anthraquinone-2-carbonyl chloride in binary solvent mixtures, methanol-acetonitrile, methanol-acetone, ethanol-acetonitrile and ethanol-acetone, have been studied by means of conductometry. Maximum rate phenomena were observed at the methanol mole fraction, $X_{MeOH}$ = 0.73~0.81 for methanol-acetonitrile and at $X_{MeOH}$ = 0.83 for methanol-acetone mixtures. The Kivinen and Grunwald-Winstein plots indicated that the reaction proceeds via $S_N2$ type mechanism. Application of Taft's solvatochromic correlation on the solvolysis rate revealed that both $\alpha$ and ${\pi}^*$ are important for reactions in methanol-acetonitrile and methanol-acetone mixtures, while only ${\alpha}$ influences significantly on the rate in ethanol-acetonitrile and ethanol-acetone mixtures.

  • PDF

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

The Study on 2 Liquid Separation Characteristics of H2SO4-HI-H2O-I2 System (I) (H2SO4-HI-H2O-I2계의 2 액상 분리특성에 관한 연구(I))

  • Lee, Tae-Cheon;Jeong, Heon-Do;Kim, Tae-Hwan;Bae, Gi-Gwang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.848-852
    • /
    • 2005
  • The two important problems to solve before the industrialization of the iodine-sulfur (IS) process are (i) methods to separate $H_2SO_4$ and HI and (ii) to maintain constant components. However undesired reaction was occurred and $H_2S$ and S were formed during the Bunsen reaction. It is necessary to forbid the undesired reaction between $H_2SO_4$ and HI by separating the two acids into two different layers. The experimental conditions for the present study was chosen in such a way that to achieve the separation between the two acids and minimize the side reaction. $H_2S$ formation was reduced and the separations of the two liquids were occurred at $H_2O$ molar fraction from 0.86 to 0.909. But the separations between the two liquids were not occurred at $H_2O$ molar fraction more than 0.92.

Determination of the mole fractions of ethylene oxide and freons in medical liquefied gas mixture by GC/AED (GC/AED를 이용한 의료용 액화혼합가스 중 산화에틸렌 및 프레온 가스류의 몰분율 측정)

  • Kim, Hyunjoo;Kim, Dalho;Lim, Arang;Lee, Taeck-Hong;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.382-387
    • /
    • 2012
  • Ethylene oxide ($C_2H_4O$, EtO) is used as a raw material for the production of ethylene glycol and other industrially important material such as ethanolamines and also used as a disinfecting agent. It is applied for gas-phase sterilization of thermally sensitive medical equipment, and for processing of storage facilities as a mixture with fluorinated hydrocarbon. In this perspective, accurate determination of the mole fractions of components in the liquefied gas mixture is required for the quality control and safety of production and use. Each component of the liquefied gas mixture has different chemical and physical properties such as vapor pressure and boiling point. Therefore, we can suppose that analytical results can be different according to the introduction method for the gas phase of upper layer, or for the liquid phase of lower layer in gas cylinder. In this study, we designed a new on-line sample injection device for the liquefied gas mixture in liquid or gas state, and applied to the analysis of liquefied gas mixture of ethylene oxide and fluorinated hydrocarbons by GC/AED (gas chromatograph-atomic emission detector). We studied performance of AED, and effect of sample introduction and selected wavelength to the accuracy and repeatability of analytical results.

Hydrogenation of Naphthalene in a Tubing Bomb Microreactor (소형 회분식반응기를 이용한 나프탈렌수소화반응 연구)

  • 이영우
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.80-86
    • /
    • 1996
  • Naphthalene hydrogenation reaction was performed as a model reaction for coal liquefaction. Product distributions of tetralin and decalin are sensitive to reaction temperature and hydrogen pressure. At 380$^{\circ}C$, hydrogenation reaction using sulfided pellet catalysts gives poor reproducibility and several experimental methods are tried to examine its cause. It was inferred that H$_2$S had, most possibly, a great effect on this phenomena and the effect of H$_2$S was systematically investigated at 250$^{\circ}C$. It is possible that the intermediate hydroaromatic compound (tetralin) is maximized by changing the partial pressure of H$_2$S. It was identified that the partial pressure of H$_2$S could be another important factor in addition to the reaction time and temperature in coal liquefaction using sulfided catalysts.

  • PDF