본 연구에서는 연료전지자동차의 초경량 복합재료 수소 탱크에 대한 수소 충전 특성을 파악하고, 충전 조건에 따른 수소 탱크의 안전성을 확인하기 위해 플라스틱 라이너를 사용하는 Type 4 수소 탱크와 알루미늄 라이너를 사용하는 Type 3 수소 탱크에 대해 수소 충전 시, 수소 탱크 내부의 가스 온도 및 압력 변화, 라이너 및 복합재료 층의 온도 변화 등을 측정하여 그 특성을 고찰하였다. 그 결과 충전 속도가 증가함에 따라 탱크 내부 가스의 온도가 증가하였고, 탱크 내부 가스의 온도 분포가 다르게 나타났다.
수소는 매우 낮은 밀도를 갖기 때문에 화석연료와 동일한 수준의 에너지량을 저장하기 위해서는 기존과 다른 저장방식이 요구된다. 수소의 밀도를 높이는 방법으로는 수소를 액화하여 저장하는 방법이 있다. 하지만, 수소의 액화온도는 -252 ℃의 극저온이기 때문에 외부 열 유입에 의해 쉽게 기화된다. 액체수소가 기화되면 탱크 내부의 압력이 증가되는 자가증압 현상을 발생하므로, 탱크 설계 시 이 상승하는 압력을 잘 예측해야 한다. 따라서, 본 논문에서는 극저온 액체수소 연료탱크의 액체수소 충전 비율에 따른 내부 압력을 예측하였다. 탱크 내부의 압력 상승을 예측하기 위하여 1차원 열역학적 모델을 적용하였다. 열전달 모델은 열 유입, 액체수소의 기화, 연료 배출에 현상이 고려되었다. 최종적으로 연료탱크 내의 액체수소의 충전 비율에 따라 압력 상승 거동과 최대 상승 압력에 큰 차이가 있음을 확인하였다.
하나로 반사체의 수직공 안에 설치된 냉중성자원 시설계통의 수조내기기는 원자로에서 생성되는 열중성자를 약 22K의 감속재로 감속시켜 0.1~10 meV 범위에서 높은 선속을 갖는 냉중성자를 생산한다. 냉중성자를 생산하기 위한 냉중성자원 시설계통의 구성은 감속재인 수소를 포함하고 있는 수소계통, 수소의 외부누출을 방지하기 위한 가스블랭킷계통, 극저온의 액체수소를 생산하기 위한 헬륨냉동계통, 극저온인 액체수소 층을 감속재용기 내에 유지하기 위한 진공계통 등으로 되어있다. 이들 계통 중 진공계통은 냉중성자원 시설계통의 정상운전 시 액체수소 열사이펀, 감속재용기 등의 냉중성자원 극저온 부품의 단열을 위하여 진공용기의 내부 진공도를 공정진공도 이하로 유지하기 위한 계통이다. 정상운전 시 진공계통으로부터 발생되는 배기 가스는 배기 수집탱크에 포집된다. 냉중성자원 시설계통으로부터 발생되는 배기가스는 배기수 집탱크를 통하여 수소의 누출여부를 확인한 후 원자로홀로 배기되도록 되어 있으며, 만일의 경우 탱크내부의 배기가스 수소 농도가 기준치인 3.5%이상일 때는 유입 원을 자동으로 차단하고, 희석용 가스인 고압의 질소를 주입하여 수소의 농도를 기준치 이하로 낮춘 후 원자로 홀로 자동 배출하도록 되어 있다. 본 논문에서는 냉중성자가 생산되는 냉중성자원 시설계통의 운전과정에서 진공계통으로부터 배출되는 배기가스를 배기수집탱크로 포집하고, 이 가스에 대해 수소가스의 농도를 분석하여 원자로 홀로 안전하게 배기할 수 있도록 수행된 수소가스 분석에 대해 기술하였다.
냉중성자원은 하나로 반사체탱크에 위치한 수직공에 설치되어 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산하는 설비로 수소가를 충전하고 있는 수소계통이 있으며, 21K의 극저온 액체수소/기체수소 2상(ttwo-phase)을 유지하기 위해 외부에서 유입되는 열침입을 최소화하기 위해 진공계통이 설치되어 있다. 진공계통은 수조내기기 집합체(In-Pool Assembly : IPA)의 액체수소 열사이펀, 감속재 용기 등의 냉중성자원 극저온 부풀들의 단열을 위하여 진공용기 내부진공도를 공정진공도 이하로 유지하기 위한 계통으로 고진공펌프, 진공배기탱크 및 저진공펌프의 조합으로 두 개의 진공펌프시스템과 진공박스, 배기수집탱크 및 밸브박스를 포함한 연결배관으로 설계되었다. 저진공펌프를 이용하여 대기압에서 고진공펌프 작동압력까지 도달한 후 고진공펌프를 가동하여 공정진공도 이하의 진공도를 확보하고, 고진공펌프로부터 배기되는 배출가스는 고진공펌프 후단에 설치된 진공배기탱크에 포집되며, 필요 시 저진공펌프레 의하여 배기수집탱크로 배출된다. 진공펌프시스템은 진공용기 내부의 압력이 공정진동고 이하로 유지되도록 연속적으로 가동되어 진공단열이 가능하다. 본 논문은 감속재인 수소를 액화상태로 유지하며, 공정진공도 이하로 충분히 유지되어 운전되는 진공계통의 특성을 원자로 운전 주기별로 소개하고자 한다.
The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.
상용 수소연료전지 차량은 기체 수소를 고압으로 압축하여 차량 내 저장 탱크로 저장하는 방식으로 충전이 진행된다. 이러한 압축 과정은 기체의 온도 상승을 유발하며, 저장 탱크의 안전성을 확보하기 위해 온도는 제한된다. 따라서 이러한 온도 상승을 설명하기 위한 열전달 모델이 필요하다. 열전달 모델은 대류 열전달 현상을 포함하며 정확한 대류 열전달 계수 추산이 요구된다. 본 연구에서는 수소 충전 과정에서의 대류 열전달 계수를 물리적 현상을 고려한 다양한 상관관계식을 이용하여 계산하고 비교 분석하였다. 수소 충전 과정은 디스펜서로부터 탱크 입구까지의 충전라인과 차량 내 저장 탱크로 분류하였고, 각각의 내부 및 외부에서의 대류 열전달 계수를 질량 유량, 직경, 온도와 압력 등 공정 변수에 따라 추산하였다. 그 결과, 충전라인 내부의 경우 저장 탱크 내부에서보다 대류 열전달 계수가 약 1000배 크게 나타났고, 충전라인 외부의 경우 저장 탱크 외부에서보다 대류 열전달 계수가 약 3배 크게 나타났다. 마지막으로 각 과정에서의 대류 열전달 계수를 종합 분석한 결과 전체 수소 충전 과정에서 저장 탱크 외부에서의 열전달 계수가 가장 낮아 열전달 현상을 지배하는 것으로 나타났다.
수소탱크의 잔류응력은 내구도와 직접적인 관련이 있기 때문에 안전을 위해 이를 줄이는 것이 매우 중요하다. Type II~IV 수소탱크는 섬유에 수지를 함침시켜 라이너에 감는 필라멘트 와인딩 공법으로 제작하게 된다. 필라멘트 와인딩에서 잔류응력은 경화조건, 섬유 인장 등에 영향을 받게 되는데, 본 연구에서는 탄소섬유 필라멘트 와인딩 공정을 이용한 Type III 수소탱크 제작 시 경화조건이 잔류응력에 미치는 영향을 분석하였다. 먼저 에폭시 수지의 경화거동을 시차주사열량계를 이용하여 분석하였다. 이를 통해 경화온도를 140℃로 설정하였다. 같은 경화시간 동안 140℃에 먼저 도달하는 2-stage 경화조건과, 보다 늦게 도달하는 4-stage 경화조건으로 각각 시편을 경화시켰다. 경화 후 복합재 부분의 잔류응력을 ring slitting 법으로 측정하였고, 이 실험값을 수치해석적인 값과 비교하였다. 그 결과, 경화조건 최적화에 따른 유의미한 잔류응력의 차이가 발생함을 확인하였다.
It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.
본 논문은 슬로싱(Sloshing) 거동에 놓인 극저온 액체수소 화물창의 BOG 예측을 위한 CFD 해석 절차를 다루고 있다. 특히, 적재율(Filling Ratio)에 따라 달라지는 열 유입과 그에 따른 액체수소의 기화 경향을 파악하기 위한 목적으로 수행되었다. 액체수소와 기체수소의 혼재에 의한 다상 열유동(Multiphase-Thermal flow) 특성을 반영하고 유동에 따른 강제 대류 현상을 열유속에 반영하기 위한 CFD 해석을 수행하였다. 다상 유동 모델의 정확성을 검증하기 위하여 슬로싱 실험의 압력 계측 값과 해석의 압력 값 및 자유수면(Free surface) 형상을 비교하였다. 소형 C-Type 독립형 액화수소 탱크를 대상으로 슬로싱 유동과 BOG 발생을 수치적으로 예측하였다. 해석 과정에서 VOF(Volume of fraction) 모델과 Eulerian 모델을 모두 적용하여, 액체수소에 유입되는 열 유속(Heat flux)의 예측 정확성을 비교하였다. 슬로싱 유무에 따라 액체수소에 유입되는 열 유속을 비교하여 슬로싱 유동의 포함 여부에 따른 BOG 발생량의 변화를 제시하였으며, 최종적으로 액체수소의 충전율(Filling ratio) 별로 BOG 발생량의 경향성을 제시하였다.
Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.