• Title/Summary/Keyword: 수소이온 농도

Search Result 399, Processing Time 0.032 seconds

An Histopathological Investigation on the Resistant Tong-Il Cultivar by Inoculating Rice Blast Fungus, Pyricularia oryzae Cav. (수도(水稻) 도열병(稻熱病)에 저항성(抵抗性)인 통일품종(統一品種)에 대한 침입생리(侵入生理)에 관(關)한 연구(硏究))

  • Chung, Bong-Koo;Kim, Kwang-Suk
    • The Korean Journal of Mycology
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 1977
  • In order to investigate histopathologically the nature of varietal resistance and infection process of the rice bast fungus, Pyricularia oryzae. this experiment was undertaken by using the resistant cultivar Tongil and susceptible cultivars Norin No.6 and Jinheung in 1973 to 1974. 1) It was found that appressorium of the fungus forms not only at 4 hours after incubation under the favorable conditions but also peak of appressorial formation is at 48 hours treatment. Physical stimulus known to be a definite factor for appressorial formation. The optimum temperature range for appressorial infection was at $24^{\circ}C$ to $28^{\circ}C$, and pH was between 4.8 to 8.0 with 6.8 as the optimum. 2) Although percent of appressorial formation on the leaves of resistant Tongil and susceptiible Norin No.6 were only slightly different, there was a remarkable difference between resistant and susceptible cultivars with regard to percent of hyphal infection and index for hyphal extension. Index of hyphal extension was 1.6-2.7 in Tonyil. while in susceptible cultivar was 3.4-6.6. The rate of discoloration of infected cells, a indication of hypersensitivity, was greater in the resistant than in susceptible cultvar. 3) Therefore, it could be concluded that resistance of Tongil cultivar may be attributable to a higher degree of mechanical barriers as well as a higher level of antifungal substance accumulation.

  • PDF

Effects of Environmental Factors on the Bacterial Community in Eutrophic Masan Reservoir (이화학적 수질인자가 부영양화된 마산저수지의 세균분포에 미치는 영향)

  • 남귀숙;손형식;차미선;조순자;이광식;이상준
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • The total bacterial numbers, Eubacterial community structures and environmental factors which affect bacterial community were estimated monthly using DAPI and fluorescent in situ hybridization monthly, from June to November 2000 to evaluate the correlation between the bacterial community and environmental factors in eutrophic agricultural Masan reservoir in Asan. Average water temperatures varied from 12.3 to $27.5^{\circ}C$, pH 7.5 to 9.0, DO 7. I~12.8 mg/L, COD 6.4~13.0 mg/L, chlorophyll a 30.5~99.0 mg/㎥, SS 7.S~25.7 mg/L, TN 1.748~3.543 mg/L., and TP 0.104~0.581 mg/L, respectively. Total bacterial numbers showed high ranges from 0.4 to 9.6$\times$ $10^{6}$ cells/ml, and these indicated the mesotrophic or eutrophic state. The ratio of Eubacteria to total bacteria was 67.6-88.0%, which was higher than that in other reservoir. The relationships of total bacteria and Eubacteria community were more significant with organic nitrogen (Org-N), and organic phosphorus (Org-P) than with water temperature. Proteobacteria groups showed strongly significant relationships with Org-P and Org-N and significant relationships with water temperature, conductivity, COD, and inorganic nitrogen. C-F group was the most significant with Org-N, and HGC group with water temperature. However, relationships of Chl-a, pH, DO and SS showed no significance with any bacterial community. These results were different from other studies, because of the specific characteristics of Masan reservoir such as old, shallow and eutrophic states. The seasonal variation of bacterial community in Masan reservoir does not seem to depend on phytoplankton dynamics but on storm event and organic materials from watershed and the sediment of reservoir.

In Situ Surfactant Flushing of Contaminated Site (계면 활성제를 이용한 In Situ 토양 세척)

  • 염익태;안규홍
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.9-24
    • /
    • 1997
  • Surfactant-aided in situ soil flushing has been proposed as an alternative for the expensive and time consuming 'pump and treat' technology in remediation of contaminated soil and groundwater Injected surfactants can effectively solubilize contaminants sorbed to the soil matrix or nonaqueous phase liquids(NAPLs) in residual saturation. The contaminants solubilized in groundwater are recovered and treated further. The theoretical background of the technology and the results of the field operations, mostly in the US. were summarized. In addition, the factors crucial to the successful application of the technology were discussed. Cost analyses and technical limitations in current applications were also discussed. In conclusion, it is likely that in situ surfactant flushing become a viable option for soil remediation in limited cases. Currently, further advances with respect to operation cost and to treatment efficiency are required for more extensive application of the technology. However, the current trends in soil remediation, specially the growing emphasis on risk based corrective action and natural attenuation, will increase the competitiveness of the technology. For example, removal of easily washable contaminants by short term soil flushing followed by long term monitoring and natural attenuation can greatly reduce the operation cost and time.

  • PDF

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Investigation of Norovirus Occurrence and Influence of Environmental Factors in Food Service Institutions of ChungCheong Area (충청지역 집단급식소의 노로바이러스 실태조사와 환경요인의 영향)

  • Jung, Woo-Young;Eom, Joon-Ho;Kim, Byeong-Jo;Yun, Min-Ho;Ju, In-Sun;Kim, Chang-Soo;Kim, Mi-Ra;Byun, Jung-A;Park, You-Gyoung;Son, Sang-Hyuck;Lee, Eun-Mi;Jung, Rae-Seok;Na, Mi-Ae;Yuk, Dong-Yeon;Gang, Ji-Yeon;Heo, Ok-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.2
    • /
    • pp.153-161
    • /
    • 2010
  • The purpose of this study was to examine the appearance of norovirus in the water for food in food service institutions and the influence of physicochemical and microbial factors of norovirus in order to work out basic data to predict the detection of norovirus. Among 82 samples of water for food in food service institutions, norovirus appeared in 7 samples and the rate of appearance was 8.5%. As for the type of norovirus, one samples contained GI type (genotype GI-6) and six samples contained GII type (genotype GII-2, GII-4, GII-12). In the regression model of prediction of norovirus, the rate of appearance was correlated with $NH_3$-N, total solids and the consumption of $KMnO_4$, out of such variables as $NH_3$-N, total solids, the consumption of $KMnO_4$, depth, chloride and total colony counts, and its contribution rate for effectiveness was 78.60%. In order to examine the influential factor of environment upon the detection of norovirus, Pearson's correlation analysis was carried out. The predictable regression formula for appearance rate of norovirus was expressed as -1.818 + 42.677 [$NH_3$-N] + 0.023 [total solids] + 0.762 [consumption of $KMnO_4$] -0.009 [depth] -0.146 [chloride] + 0.007 [total colony counts] (R = 0.904, $R^2$ = 0.818, adjusted $R^2$ = 0.786, p < 0.05). The most influential factors upon the detection of norovirus were $NH_3$-N, total solids and the consumption of $KMnO_4$. In other words, when the measured values of $NH_3$-N, total solids and the consumption of $KMnO_4$ were higher, the possibility of appearance of norovirus increased.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF

Study on Skin pH Improvement Effect through Regulation of Na+/H+ Exchanger 1 (NHE1) Expression of Prunella vulgaris Extract and Its Active Compound, Caffeic Acid (꿀풀 추출물과 그 활성 화합물인 카페인산의 Na+/H+ exchanger 1 (NHE1) 발현 조절을 통한 피부 pH 개선 효과에 대한 연구)

  • No-June Park;Sim-Kyu Bong;Sang-A Park;Gi Hyun Park;Young Chul Ko;Hae Won Kim;Su-Nam Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • This study was conducted to discover substances that regulate skin surface acidification using human epidermal keratinocyte cell lines, and to investigate their effects on the moisturizing ability and skin barrier function of the stratum corneum. Prunella vulgaris (P. vulgaris) is an herb widely distributed in Northwest Africa and North America that has been studied for its anti-apoptotic, antioxidant, and anti-inflammatory effects. However, research on the regulation of NHE1 expression and the restoration of skin barrier function has not been conducted. Analysis of P. vulgaris revealed the presence of rosmarinic acid and caffeic acid as active ingredients, which were tested for toxicity in human epidermal keratinocyte cell lines (HaCaT), and showed no toxic effects were observed at high concentarion (100 ㎍/mL or 100 µM). It is known that sodium-hydrogen ion exchange pumps (NHE1) decrease in expression in aging skin to maintain the acidic pH of the stratum corneum, and it is hypothesized that this decrease plays an important role in the impaired restoration of skin barrier function in aging skin. P. vulgaris extract and caffeic acid increased the expression of NHE1 in keratinocytes, increased the expression of natural moisturizing factor (NMF) precursor filaggrin and ceramide synthesis enzyme serine palmitoyl transferase (SPT). In addition, P. vulgaris and caffeic acid decreased the extracellular pH of keratinocytes, indicating a direct effect on skin pH regulation. Taken together, these results suggest that P. vulgaris and caffeic acid can regulate skin pH through NHE1 modulation, and may help to restore skin barrier function by increasing NMF and ceramide synthesis. These results show the possibility that honeysuckle and caffeic acid can have a positive effect on skin health, and can be the basis for the development of new skin protection products using them.

Influences of Forest Management Practices on pH and Electrical Conductivity in the Throughfall and Stemflow with the Abies holophylla and Pinus koraiensis Dominant Watershed (전나무림, 잣나무림 유역에서 수관통과우와 수간유하수의 수소이온농도 및 전기전도도에 미치는 산림시업의 영향)

  • Jeong, Yong-Ho;Kim, Kyong-Ha;Park, Jae-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.52-61
    • /
    • 2002
  • This research was conducted to evaluate the effect of forest management practices on pH and electrical conductivity to get fundamental information on water purification capacity after forest operation. Rainfall, throughfall and stemflow were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Gwangreung Experimental Forest for S months from May to November 1999. Mean pH of the throughfall of the beginning of the event was higher in management (thinning and pruning) sites of Abies holophylla and Pinus koraiensis stands than nonmanagement site of Abies holophylla and Pinus koraiensis stands. In addition, pH of the throughfall of the total amount of the event showed similar trends which are higher pH in the management sites compared with the non- management sites. This result indicates that managements such as thinning and pruning improve tree butler capacity of rainfall pH. According to the linear regression results, pH of the throughfall of the total amount of the event in non-management sites = 0.735${\times}$pH of the throughfall of the beginning of the event in non-management sites+1.849 ($R^2\;=\;0.82$) and pH of the throughfall of the total amount of the event in management sites= 0.863${\times}$pH of the throughfall of the beginning of the event in management sites +1.0242 ($R^2\;=\;0.87$). In case of stemflow pH, pH of the sternflow of the total amount of the event in non-management sites = 0.53${\times}$pH of the stemflow of the beginning of the event in non- management sites+2.7709 ($R^2\;=\;0.64$) and pH of the stemflow of the total amount of the event in management sites = 0.5854${\times}$pH of the stemflow of the beginning of the event in management sites+2.7045 ($R^2\;=\;0.65$). Electrical conductivity (EC) of the throughfall of the beginning and total amount of the event was highest in non- management site in Abies holophylla, followed by management sites in fsies Abies holophylla, non-management site in Pinus koraiensis, and management sites in Pinus koraiensis stands, respectively. According to the linear regression results, EC of the throughfall of the total amount of the event in non-managementsites = 0.4045${\times}$EC of the throughfall of the beginning of the event in non-management sites+26.766 ($R^2\;=\;0.69$) and EC of the throughfall of the total amount of the event in management sites = 0.6002${\times}$EC of the throughfall of the beginning of the event in management sites+8.0184 ($R^2\;=\;0.54$). In case of stemflow EC, EC of thestemflow of the total amount of the event in non-management sites = 0.6298${\times}$EC of the stemflow of the beginning of the event in non-management sites+11.582 ($R^2\;=\;0.72$) and pH of the stemflow of the total amount of the event in management sites =0.602${\times}$pH of the stemflow of the beginning of the event in management sites+20.783($R^2\;=\;0.49$).