• Title/Summary/Keyword: 수소이온 농도

Search Result 399, Processing Time 0.03 seconds

A Study on the Reinforcement and Environmental Impact of LW Injection (LW주입에 의한 지반보강 및 환경영향성에 관한 연구)

  • Chun, Byungsik;Do, Jongnam;Sung, Hwadon;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.121-131
    • /
    • 2006
  • This study is performed to examine the ground reinforcement effect and the environmental impact of LW injection, which is widely used during the excavation of high-rise apartment buildings. In addition, it proved that by conducting field exploration and laboratory test the engineering ground reinforcement effect of LW injection in the ground has low coefficient of permeability. The environmentally friendly aspect was evaluated through an assessment of environmental impact. The results of laboratory test shows that LW coagulating material with SC type soil structure has significant improvement of uniaxial compressive strength, increasing by three times and the shear strength increasing by twice, coefficient of permeability decreasing six to seven times. And the result of environmental impact tests show that from 6 hour after where the pH increases until 7.96 to initially it diminished, it started and to 80 hour after it recovered a pH 7.25 initially with 7.30. The chemical composition analysis test result that unpolluted water and polluted water hydrogen ion concentration (pH) show that the unpolluted water pH 7.36, polluted water pH 7.85, which is inside the Ministry of Environment standard of drinking water (the pH 5.8~8.5). The assessment of environmental impact and chemical analysis test also demonstrate that the LW coagulating material is environmentally friendly. In the $Cr^{6+}$ and the salinity detection test, it was proven that the salinity is slight and the $Cr^{6+}$ is not detected.

  • PDF

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

Quality Characteristics of Seaweed Kimchi Containing Kjellmaniella crassifolia and Mytilus coruscus Seasoning (Kjellmaniella crassifolia와 Mytilus coruscus 조미액을 첨가한 해조김치의 품질특성)

  • Kim, Ki-Woong;Bae, Tae-Jin
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.4
    • /
    • pp.254-263
    • /
    • 2017
  • In order to improve the utilization of seaweeds, two kinds of mixed seasoning concentrates (KMS, MKS) were prepared with Kjellmaniella crassifolia and Mytilus coruscus as main ingredients. Fermentation experiments were carried out at $4^{\circ}C$ for 70 days with Kimchi. As a result, SK-A showed a decrease in pH and an increase in acidity. Salinity was not significantly different after 70th day. Reducing sugar content was higher in mixed seasoning group. Lactic acid bacteria Leuconostoc sp. and Lactobacillus sp. Increased in the control group after 20 days of fermentation. The lightness was higher in the control group from the early stage of dipping to 30 days, and the degree of yellowing was higher than that of SK-B group from 20 days. The hardness of the SK-A group was high at the early stage of immersion and at 10th day. The content of aspartic acid and glutamic acid in free amino acid SK-A group was significantly higher (p<0.05). The content of sweet amino acids was significantly higher in the SK-A group on the 0th, 10th, and 30th days of fermentation than the other groups (p<0.05). The sensory test results showed that SK-A showed the most favorable taste. As a result of reviewing the above results, it is expected that SK-A group immersed in 100 g of seasoning liquid KMS made from Kjellmaniella crassifolia and Mytilus coruscus as a subordinate material will provide taste and nutrition to consumers.

Prediction of Chemical Acceleration Durability Time of Polymer Membrane in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지에서 고분자막의 화학적 가속 내구 시간 예측)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • For durability improvement of polymer electrolyte membrane fuel cell (PEMFC) polymer membrane, accelerated durability evaluation methods that can evaluate durability in a short time have been researched and developed. However, the lifespan of fuel cells for large commercial vehicles such as trucks and buses is more than three times that of passenger cars, and the chemical accelerated stress test (AST) time is also longer, reaching 1,500 hours or more. Therefore, in this study, as a method to evaluate the chemical durability of a membrane within a short time, it was examined whether the durability could be predicted by the pristine membrane characteristics. Hydrogen crossover current density (HCCD) and short resistance (SR) were estimated as initial characteristics, and AST time was predicted through the Fenton experiment, which was possible as an out-of-cell experiment for 3 hours. As the HCCD and fluoride ion emission concentration increased, the AST time tended to be linearly shortened, but there was a deviation (R2 ≒0.65). When the SR decreased, the AST time showed a linear increase, and the accuracy was high (R2 =0.93), so the AST time could be predicted with the initial SR of the membrane.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Characteristics of Marine Algal Communities in Village Fishing Grounds Near Large Wildfires in Uljin-gun (울진군 대형산불 발생 인근 마을어장의 해조류 군집 특성)

  • Jeong Hee Shim;Hee Chan Choi;Hae-Kun Jung;Jong-Ku Gal;Jeong-Min Shim;Sung-Eic Hong;Chul-Hui Kwoun;Sang-Woo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.87-97
    • /
    • 2023
  • In this study, we examined the effects of a large wildfire in the coastal area of Uljin-gun. The analysis of water quality and the dominant species, species composition, and community structure of marine algal was conducted quarterly in 2022 at Nagok (F-1), Hujeong (F-2), Bongpyeong (F-3), and Gongse Port (F-C) in Uljin-gun. As a result of water quality analysis, the pH, a factor of wildfire impact was 8.07~8.30 and 8.12~8.48 in surface and bottom layers, respectively, which are normal values in coastal waters of the East Sea, suggesting no direct impact from wildfires. By marine algal species composition, the coastal areas show the following order: Rhodophyta (58.1%) > Ochrophyta (25.8%) > Chlorophyta (14.5%) > Magnoliophyta (1.6%). By season, Undaria pinnatifida was the most dominant at Nagok and Hujeong in March and June, which in September and November, Gelidium elegans and Lithophyllum sp. were the most dominant in Bongpyeong and Gongse Port, respectively. In the cluster analysis, the stations were divided into two groups according to presence and absence of specific marine algal by season. The dominant species were U. pinnatifida, G. elegans and D. divaricata in group A, and Lithophyllum sp. was mainly present in group B. Thus, the species composition and group structure reflected the normal seasonal change pattern with water temperature variation and showed little significant difference from the control site, suggesting no direct effects of the wildfire on algae distribution in Uljin.

Mycelial Culture and Fruiting Analysis of Panellus edulis Strains Collected in Korea (Panellus edulis 수집 균주의 균사배양 및 자실체 특성 분석)

  • Woo, Sung-I;Ryoo, Rhim;Jang, Yeongseon;Park, Youngae;Jeong, Yeun Sug;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.281-294
    • /
    • 2018
  • Molecular analysis using the internal transcribed spacer region sequences revealed that the strains used in this study, which were formerly identified as Panellus serotinus, are Panellus edullis. After Universal Fungal PCR Fingerprinting (UFPF) analysis, eight strains of P. edulis were divided into two groups. We conducted fundamental research on mycelial growth and sawdust cultivation to understand the cultural characteristics of eight wild P. edulis strains collected from Korean forests. All strains showed faster and denser mycelial growth on potato dextrose agar (PDA) than on other media (malt extract agar, Sabouraud dextrose agar). Optimal conditions for mycelial growth were: $20^{\circ}C$ on PDA, $25^{\circ}C$ on potato dextrose broth (PDB), and pH 5~8 on PDB at $25^{\circ}C$. Two strains (NIFoS 2407, 3993) were selected as excellent strains based on mycelial growth and density on PDA. NIFoS 2792 showed high cellulase activities on carboxymethyl cellulose (CMC) agar, and NIFoS 2387 and 2804 exhibited high laccase activities on ABTS-containing agar media. The mycelial growth of P. edulis was the fastest on Quercus acutissima and Q. mongolica sawdust media, and mycelial density was the highest on Quercus spp. sawdust-containing media. Sawdust cultivation of P. edulis was successful. The conditions were 80~85 days of cultivation period after spawn inoculation, 10~11 days for primordial formation at $17{\sim}18^{\circ}C$, and 15~20 days for fruiting growth. NIFoS 2804 and 3993 were selected as good strains in terms of cultivation period and mushroom production. These results could be useful for the artificial cultivation of P. edulis.

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.