• Title/Summary/Keyword: 수소연료 전지자동차

Search Result 134, Processing Time 0.026 seconds

An Economic Feasibility Analysis of a Hydrogen Fuel-Cell Vehicle Considering GHG (GHG를 고려한 수소연료전지 자동차의 경제성 분석)

  • Yang, Moon-Hee;Gim, Bong-Jin;Kim, Jong-Wook
    • New & Renewable Energy
    • /
    • v.1 no.3 s.3
    • /
    • pp.42-50
    • /
    • 2005
  • This paper deals with the economic feasibility model and analysis of a hydrogen fuel-cell vehicle [FCV] against two similar types of non-business vehicles fueled with gasoline [GV] and diesel [DV] considering greenhouse gas [GHG]. Considering the price of vehicles and annual operating cost, we build a classical economic feasibility model. Since the economic feasibility could be affected by many input factors such as the prices of vehicles, the price of fuels, annual driving distance and so on, we estimate the average future values of input factors, which is defined as "the average case". Based on the average case, we assess the representative economic feasibility of a FCV with/without GHG, and by changing various annual driving distances, we assess its economy in terms of net-present value, internal rate of return, and payback period. In addition, we make some sensitivity analysis of its economic feasibility by changing the values of the critical input factors one at time. Based on the average case, it turns out that the consumer of a FCV could save 25,000 won/year for a GV, but the consumer could pay 120,000 won/year more for a DV. This indicates that gasoline vehicles could be replaced gradually by FCVs in Korean market which might be formed by those consumers driving annually more than approximately 14,800 km. As the results of our sensitivity analysis, it turns out that a FCV is no more economical if the difference of the prices between FCV and GV is more than 10,130,000 won or the price of hydrogen fuel could be more than 5,136 won/kg.

  • PDF

Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand (국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Oh, Jeon-Keun;Yoon, Young-Seek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 신뢰성 평가)

  • Jang, Gyu-Jin;Choi, Young-Min;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate vibration and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

Humanity and Automotive (인간과 자동차)

  • Choi, Seibum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.870-870
    • /
    • 2013
  • 운송수단은 시대별로 요구되는 성능과 기술 수준 그리고 사용 가능한 에너지의 형태에 따라서 변화되어 왔습니다. 1900년대 초 전기자동차의 고질적인 제한적 운행 거리 문제는 내연기관의 발명으로 인해서 쉽게 해결되었다. 이 후 내연기관의 급속한 보급과 도심 과밀화로 인해서 공해 문제가 대두되었는데, 공해 문제 역시 배기 가스 환원 촉매의 발달과 자동차 전자 제어 기술의 발달로 대부분 해결된 상태이다. 최근에는 사용 가능한 화석에너지의 절대량 측면에서 하나의 커다란 시대적 전환점에 서게 되었다. 즉 아직도 사용 가능한 석유의 절대적인 양적 측면에서는 적당한 공급이 이루어지고 있으나 그 가격 면에서는 급격한 상승이 이어지고 있으며 이는 석유의 채굴이 점점 어려워지고 있음에 기인한다. 에너지의 현황을 객관적으로 살펴 보기 위해서 자동차에 있어서 절대적인 오일을 중심으로 그리고 통계자료 위주로 문제를 분석해 본다. 그리고 수소 연료 전지와 전기자동차 등 여러 가지 대체 에너지 운송기술이 많이 거론되고 있으나 널리 대중화 되고 있지 못하는 근본적인 문제점들이 어디에 있는지 분석해 본다. 이어서 소위 대체 에너지들이 자동차에 있어서 석유의 대체 수단으로 적합하지 않다면 과연 에너지를 가장 많이 쓰는 영역중의 하나인 운송 분야의 현재와 미래의 나아갈 방향은 무엇인지 그 해법을 생각해 본다. 석유를 대체할 에너지의 공급 방안이 충분하지 않다면 마지막으로 생각할 수 있는 것은 에너지의 소비 측면이다. 다행히도 그간 소비 측면의 개선 방안이 많이 소홀하게 취급되어져 왔다. 즉 에너지의 효율을 향상시킬 수 있는 여력이 충분하고도 많이 있다는 희망적인 소식이다. 이에 따라 에너지 효율 향상에 유용하게 사용할 수 있는 다양한 제어 기술을 소개한다. 에너지와 운송수단의 문제를 거시적이고 동시에 현실적으로 바라볼 수 있는 안목을 갖게 되기를 기대한다.

  • PDF

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구)

  • Jin, Wei;Kwon, Oh-Jung;Jo, In-Su;Hyun, Deok-Su;Cheon, Seung-Ho;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle in Post Crash (수소연료전지자동차의 충돌시 절연성능 평가방법에 관한 고찰)

  • Lee, Kiyeon;Gil, Hyoungjun;Kim, Dongook;Kim, Dongwoo;Kang, Daechul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.612-618
    • /
    • 2012
  • In this paper, in order to prevent electric shock of high voltage system of HFCV after crash test, insulation performance measurement methods were studied. Under conditions of in-use, insulation performance tests can be divided into measurement method using the vehicle's own RESS as DC voltage source and measurement method using DC voltage from off-vehicle sources. However, these tests can not be applied after a post-crash because parts of high voltage system cover should be removed, and insulation performance can be influenced during these tests. Therefore, we proposed post-crash insulation performance test methods for preventing electric shock through problem analysis of previous post-crash insulation performance tests. Also, test equipment which can measure voltage absence and total energy was developed. We verified performance of the equipment through experiments with vehicle test.

A World Trend of Hydrogen Energy Policy and Patent Analysis on the Hydrogen Compressor (수소 에너지 정책의 세계동향 및 수소 압축기의 특허분석)

  • Shim, Kyu-Jin;Kong, Tae-Woo;Lee, Yong-Hun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.179-185
    • /
    • 2005
  • Nowadays, study about hydrogen fuel which consist of hydrogen extraction process, reforming, fuel cell equipment, and receptacle are flourish all over the world. Currently, Korea hydrogen station is still underdevelopment. Yet the most important part such as hydrogen compressor has not been develop. Therefore, if the high pressure compressor for hydrogen have been developed by domestic technology. In the future many benefit can be gain instead of importing. Such as many hydrogen station can be built in Korea, and also Korea will be able to provide hydrogen system for worldwide. This study is going to analysis hydrogen compressor in order to store high pressure hydrogen. This is almost approach practical use of tile hydrogen storage method.

  • PDF