Kim, Young-Doo;Shin, Dong-Hoon;Chung, Tae-Yong;Nam, Jin-Hyun;Kim, Young-Gyu
한국신재생에너지학회:학술대회논문집
/
2007.11a
/
pp.59-62
/
2007
연료전지는 수소를 이용하여 전기를 생산하는 발전 시스템으로 운전 중 수소 누출과 폭발의 위험성을 항상 수반하고 있다. 따라서 안전성의 확보를 위해 연료전지 시스템 내부에서 수소 누출 시 유e동 특성으로 인한 특정 부근 농도 정체와 환기의 영향을 파악하는 것이 필요하다. 실험 장치와 전산유체역학 프로그램을 사용하여 챔버 내 수소의 유통 특성과 환기구에 따른 환기의 영향을 확인하였다. 수소의 누출 속도와 양에 따라 유동장의 형태는 크게 변하였으며 환기구의 위치와 크기는 특정 부근의 농도정체와 챔버 내 전체적인 수소 농도에 영향을 미침으로서 안정성을 확보하는 중요한 인자임을 알 수 있었다. 예측 결과를 실제 실험 모델과 비교하여 그 타당성을 검토하였으며 차후 가정용 연료전지 모듈의 환기구 설계에 적용할 수 있다.
Journal of Korean Tunnelling and Underground Space Association
/
v.24
no.4
/
pp.305-316
/
2022
Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.
Hydrogen refueling stations that use compressed hydrogen at high pressure provide safety distances between facilities in order to ensure safety. Most accidents occurring in hydrogen stations are accidental leaks. When a leak occurs, various types of ignition sources generate a jet flame. Therefore, the analysis of leaked gas diffusion and jet flame due to high pressure hydrogen leakage is one of the most important factor for setting the safety distance. In this study, the leakage accidents that occur in the hydrogen refueling station operated in high pressure environment are simulated for various leakage source sizes. The results of this study will be used as a reference for the future safety standards.
The residential fuel cell system was modeled as a box-shaped chamber with vent openings, filled with various components such as reformer, desulfurizer, fuel cell stack and humidifier. When the vent openings are 1% of the total surface and hydrogen leakage 1%, hydrogen concentration is around 0.1% higher than the other regions from leak points in the chamber at 30 seconds and hydrogen concentration is increased from 0.3% to 0.7% in the upper region of the system after 200 seconds. When the vent openings are 1% of the total surface and hydrogen leakage 1%, 3%, 5%, the steady state result of CFD, 5% of hydrogen leakage is reached the lowest ignition limit in the system. When the vent openings are 2% of the total surface and hydrogen leakage 1%, hydrogen concentration is increased in the bottom of the system for 60 seconds. After 250 seconds, hydrogen concentration is reached the steady state in the system. As the vent opening of the total surface increased from 1% to 2%, averaged hydrogen mole fraction is under 1% in the system, however, upper regions of the system from the hydrogen leakage points are shown over 1% of hydrogen mole fraction.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.551-557
/
2024
Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.
An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.
Journal of the Korean Society of Marine Environment & Safety
/
v.28
no.4
/
pp.610-619
/
2022
Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.
Seong Min Lee;Ha Young Kim;Byeol Kim;Kwang Il Hwang
Journal of the Korean Society of Marine Environment & Safety
/
v.30
no.2
/
pp.165-175
/
2024
Hydrogen is being touted as one of the energy sources to combat the climate change crisis. However, hydrogen can leak into enclosed spaces, rise to the ceiling, accumulate, and cause fires and explosions if it encounters an ignition source. In particular, ships that transport hydrogen or use it as a fuel comprise multiple enclosed spaces. Therefore, the dif usion characteristics within these spaces must be understood to ensure the safe use of hydrogen. The purpose of this study is to experimentally determine the diffusion characteristics of helium, which has similar properties to hydrogen, in a closed space on board a ship, and to determine the change in the oxygen concentration along the leakage direction as the air change per hour(ACH) increases to 25, 30, 35, 40, and 45 through CFD simulation. The study, results revealed that the oxygen concentration reduction rate was 2% for leakage in the -z direction and 1% for leakage in the +x and +z directions, and the ventilation time was 15 min 30 s for leakage in the -z direction, 7 min for leakage in the +x direction, and 9 min for leakage in the +z direction, showing that differences existed in the oxygen concentration and ventilation time depending on the leakage direction. In addition, no significant difference was observed in the rate of oxygen concentration reduction and ventilation time in all leakage directions from the ACH of 35 and above in the experimental space. Therefore, because the oxygen concentration and ventilation time were not improved by increasing the ACH, 35 was noted as the optimal ACH in this experimental environment.
The purpose of this study is to assess quantitatively the amount of leaks and the extent of dispersion in case of a leak at a hydrogen fluoride tank container unloading station, and to suggest a safety improvement plan to prevent recurrence of similar accidents. In 2012, Company H leaks 8 tonnes of tank containers with a maximum storage capacity of 18 Ton, causing it to become a social issue. As a result of calculation using Gaussian plume model, the concentration was estimated to be more than 20ppm from the leak point to 1,321 m radius. The leakage of hydrogen fluoride from the company R in 2014 was estimated to be 11.02 kg, of which 2.9 kg was treated by the scrubber. As a result of calculation using Gaussian plum model, the damage range with a concentration of 20ppm or more from the leak source was estimated to be 69 m in radius. As a result of comparing the above two accidents, it was found that the leakage amount was about 987 times different and the damaged site was more than 19 times different. Therefore, it was concluded that it was necessary to control the wearing of the protective equipment, the enclosure of the unloading site, the installation of the scrubber, and the emergency training to avoid the accidental leakage of a hydrogen fluoride from the unloading site.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.5
/
pp.26-35
/
2016
As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.