• Title/Summary/Keyword: 수소결합

Search Result 794, Processing Time 0.022 seconds

Free Radical Scavenging Activities and Inhibitory Effects on Xanthine Oxidase by Ethanol Extract from Capsella bursa-pastoris (냉이(Capsella bursa-pastoris)에탄을 추출물의 유리라디칼 소거 및 Xathine Oxidase 저해활성)

  • Hong, Jung-Il;Ra, Kyung-Soo;Sung, Ha-Chin;Yang, Han-Chul;Kweon, Mee-Hyang
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.590-595
    • /
    • 1995
  • To examine the characteristics of antioxidative compounds from Capsella bursa-pastoris, ethanol extracts were separated into five organic solvent fractions; hexane(Fr.H), diethyl ether (Fr.E), ethyl acetate(Fr.EA), butanol (Fr.B), and water(Fr.D) fractions. Fr.B showed the greatest electron donating ability and inhibitory effect on lipid peroxidation. Whereas Fr.E had the most excellent activity in the superoxide radical scavenging activity by xanthine/xanthine oxidase-cytochrome c reduction system. The inhibitory effect of each fraction on xanthine oxidase was also measured. Fr.E had the strongest inhibitory effect on xanthine oxidase and $IC_{50}$ was $5.65\;{\mu}g$. The results indicate that the superoxide radical scavenging activity of Fr.E is caused by the inhibitory effect on radical generating system of xanthine oxidase. Also the order of inhibitory effect on xanthine oxidase was Fr.B

  • PDF

A Study for Kinetics and Oxidation Reaction of Alcohols by Cr(VI)-4-(Dimethylamino)pyridine (크롬(VI)-4-(Dimethylamino)pyridine에 의한 알코올류의 산화반응과 반응속도에 관한 연구)

  • Kim, Young-Sik;Park, Young-Cho;Kim, Young Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.499-505
    • /
    • 2013
  • Cr(VI)-4-(dimethylamino)pyridine[4-(dimethylamino)pyridinium chlorochromate] was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium trioxide in 6M-HCl, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$H_2SO_4$ solution), 4-(dimethylamino)pyridinium chlorochromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.68(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Competitive Adsorption of Cd and Cu on Surface of Humic Acid Extracted from Peat (피트에서 추출한 부식산 표면에 대한 카드뮴과 구리의 경쟁 흡착)

  • Lim, Soo-Kil;Chung, Chang-Yoon;Ok, Yong-Sik;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.344-351
    • /
    • 2002
  • Chemical speciation and transport of heavy metals in soil environment could be controlled by humic acid. In order to understand the mechanism on competitive adsorption of Cd and Cu on the surface of humic acid extracted from peat, the charge development of humic acid were investigate through a batch adsorption experiment with a series of different background electrolytes levels. The competitive adsorption of Cd and Cu to the humic acid were estimated according to the model using the proton binding constant obtained from the above batch test. The affinity of Cu to the carboxyl group on the humic acid was higher than that of Cd, but the affinity to the phenolic group was lower than to the carboxyl group. It seems that the amount of adsorbed Cd and Cu could be estimated using the proton binding constant obtained from a solution with single background ion. However, it is difficult to interpret the competitive adsorption of Cd and Cu with the constant for single background ion.

Preparation and Characterization of Polyvinylidene Fluoride by Irradiating Electron Beam (전자빔 조사를 이용한 Polyvinylidene Fluoride의 제조 및 특성)

  • Choi, Yong-Jin;Kim, Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • For the purpose of introducing hydrophilic function to pristine PVDF, pristine PVDF was modified under atmosphere and aqueous vapor by irradiating electron beam (EB). EB dose was varied from 0 to 125 K Gray, respectively. Their changes of chemical composition /structure were observed and evaluated by FT-IR, EDS and DSC. Also, their surface behaviors were evaluated by contact angle. In FT-IR study, it was confirmed that hydroxyl functions were introduced to pristine PVDF. In EDS analysis, mole ratio of F (fluoride) was almost constant (about 33%) in spite of increasing EB dose, meaning that hydroxyl function was introduced via dehydrozenation, not via deflurodination. In DSC study, $T_g$ increased with increasing EB dose, which was reconfirmed that hydroxyl function was introduced via dehydrozenation. $T_m$ increased with increasing EB dose, inferring that the increase in EB dose led to more outbreak of hydroxyl function which led to more enhanced hydrogen bond. In the result of contact angle, pristine PVDF film was $62^{\circ}$ and 125 K Gray-irradiated PVDF film was even $13^{\circ}$. All results showed that pristine PVDF was successfully changed to hydrophilic PVDF.

Development of Gel Sheet Mask Based on Physical Properties Study of Tamarindus indica Seed Gum, Ethanol, Polyols, and Acid/Base Reaction (타마린드씨검과 에탄올, 폴리올 및 산·염기 반응의 물성 연구를 바탕으로 한 겔 시트 마스크의 개발)

  • Yeo, Hye Lim;Lee, Hyo Jin;Kang, Hae-Ran;Jung, So Young;Lee, So Min;Kim, Hyung Mook;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.305-316
    • /
    • 2021
  • This study relates to the development of a new gel sheet mask that finally does not require support based on the reactivity and acid/base reaction experiments of Tamarindus indica seed gum (TG), ethanol, and polyols. When TG and a specific alcohol was mixed at a certain mixing ratio, a transparent gel is formed by reaction with each component, and thus a gel sheet mask without support might be obtained using the mixture. In order to maximize skin tone improvement, a carbonation system of acid and base reactions was introduced, and skin brightness and moisturizing power were evaluated using a spectrophotometer and a moisture measuring device. Through this study, it is expected that the gelation reaction by hydrogen bonding of TG, ethanol, and polyols can be developed into various types, and the gel sheet mask formulation introduced in this study is expected to help develop new products in the future.

A Study on the Emulsifying Stability of W/O Type Sunscreen Cream by the Hansen Solubility Parameter (Hansen Solubility Parameter 를 통한 W/O 형 자외선차단 제형의 유화 안정성에 관한 연구)

  • Kim, Dong Hee;Lee, Jin Jae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • The water resistance is important factor for sunscreen formulations. Generally a sunscreen cream was formulated by a water-in-oil (W/O) emulsion. In the W/O emulsion system, silicone oils are added to improve the texture of formulations. Silicone oils have low compatibility with organic sunscreen agent, causing problems with the stability in emulsion. In this study, the compatibility between various oils in the W/O emulsion was derived numerically using Hansen solubility parameter (HSP) at first. HSP is represented a dispersion degree, a polarity, and a hydrgen bond in a composition. In this study, various emulsions were prepared according to the types of oils with different HSP values and then monitored by a viscosity and morphology according to the time and temperature. The HSP values of components and the experimental results have similar activities for the stability of emulsions. HSP made it easy to select oil with high compatibility. When the compatibility of the oil phase in the W/O emulsion was high, the viscosity change over time was small. The stability was improved under the freeze-thaw cycle (-15 ℃ ~ 45 ℃). In the future, if the composition of the ingredients is optimized through HSP, it is expected that it will be helpful in the development of W/O type sunscreen formulations that are excellent in use and stability.

Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields (축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략)

  • Sangyeop Chae;Kwangmin Ryu;Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.45-53
    • /
    • 2023
  • This study discussed the trend and future strategy of adsorption technology R&D to effectively recover ammonia emitted from the livestock fields. A proper ammonia adsorbent should incorporate acidic or hydrogen bonding functional groups on the surface, as well as a high specific surface area and a good surface structure appropriate for ammonia adsorption. Activated carbon and minerals such as zeolite have widely been used as ammonia adsorbents, but their adsorption effects are generally low, so any improvement through surface modification should be necessary. For example, incorporation of metal chloride included in a porous adsorbent can promote ammonia adsorption effectiveness. Recently, new types of adsorbents such as MOFs (Metal-Organic Frameworks) and POPs (Porous Organic Polymers) have been developed and utilized. They have shown very high ammonia adsorption capacity because of adjustable and high specific surface area and porosity. In addition, Prussian Blue exhibited high ammonia adsorption and desorption performance and selectivity. This looks relatively advantageous in relation to the recovery of ammonia from livestock waste discharge. In the future, further research should be made to evaluate ammonia adsorption/desorption efficiency and purity using various adsorbents under conditions suitable for livestock sites. Also, effective pre- and/or post-treatment processes should be integrated to maximize ammonia recovery.

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment (질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성)

  • In Woo Lee;Seongjae Myeong;Chung Gi Min;Seongmin Ha;Seoyeong Cheon;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.