• Title/Summary/Keyword: 수분확산계수

Search Result 77, Processing Time 0.031 seconds

Prediction of Time-dependent Moisture Diffusion Coefficient in Early-age Concrete (초기재령 콘크리트의 시간 의존적인 수분확산계수 예측에 관한 연구)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.141-148
    • /
    • 2005
  • The nonlinear humidity distribution occurs due to the moisture diffusion when a concrete is exposed to an ambient air. This nonlinear humidity distribution induces shrinkage cracks on surfaces of the concrete. Because shrinkage cracks largely affect the durability and serviceability of concrete structures, the moisture diffusion in concrete must be investigated. The purpose of this paper is to propose a model of the moisture diffusion coefficient that governs moisture diffusion within concrete structures. To propose the model, numerical analysis was performed with several experiments. Because the moisture diffusion coefficient is changed with aging, especially at early ages, the proposed model includes aging effect by terms of the porosity as well as the humidity of concrete.

A Study on the Dry Shrinkage and Moisture Diffusion Coefficient of Polymer-Modified Mortars by the Moisture Diffusion (수분확산에 의한 폴리머 시멘트 모르터의 건조수축과 확산계수에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.145-154
    • /
    • 1996
  • Polymer-modified mortars have an excellent water proofness and water retentivity. Therefore, the study on the moisture diffusion behavior- is very important. The purpose of' this study is to investigate the effects of relative humidity and moisture content in mortars on the moisture diffusion, and the relationship between the shrinkage and moisture diffusion coefficient of polymer-modified mortars cured at $20{\circ}C$ 50% R.H and 80% R.H. The pore size distribution of the polymer-modified mortars was also measured. From the test results, the relative humidity and moisture content in mortars influenced on the moisture diffusion of polymer-modified mortars. The shrinkage and moisture diffusion coefficient of polymer-modified mortars cured at $20{\circ}C$ 50% R.H. was bigger than that cured at $20{\circ}C$ 80% R.H.. and decreased with increasing polymer-cement ratio regardless of polymer type.

Mass Transfer Characteristics in the Osmotic Dehydration Process of Carrots (당근의 삼투건조시 물질이동 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • Diffusion coefficients of moisture and solid, reaction rate constants of carotene destruction, and the fitness of drying models for moisture transfer were determined to study the characteristics of mass transfer during osmotic dehydration. Moisture loss and solid gain were increased with increase of temperature and concentration; temperature had higher osmotic effect than concentration. Diffusion coefficient showed similar trend with osmotic effect. Diffusion coefficients of solids were larger than those of moisture because the movement of solid was faster than that of moisture at the high temperature. Reaction rate constants were affected to the greater extent by concentration changes than by temperature changes. Arrhenius equation was applied to determine the effect of temperature on diffusion coefficients and reaction rate constants. Moisture diffusion required high activation energy in $20^{\circ}Brix$, while relatively low in $60^{\circ}Brix$. To predict the diffusion coefficients and reaction rate constants, a model was established by using the optimum functions of temperature and concentration. The model had high $R^2$ value when applied to diffusion coefficients, but low when applied to reaction rate constants. Quadratic drying model was most fittable to express moisture transfer during drying. In conclusion, moisture content of carrots could be predictable during the osmotic dehydration process, and thereby mass transfer characteristics could be determined by predicted moisture content and diffusion coefficient.

  • PDF

Cracking Behavior of Concrete Box Culvert for Power Transmission Due to Drying Shrinkage (전력구 콘크리트 구조물의 건조수축 균열특성에 관한 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to predict the cracking behavior and suggest the method of controlling the cracking in concrete box culvert for power transmission due to differential drying shrinkage. Drying shrinkage cracking is mainly influenced by the moisture diffusion coefficient that determines moisture diffusion rate inside concrete structures. In addition to the diffusion coefficient, surface coefficient of concrete surface and relative humidity of ambient air simultaneously affect the moisture evaporation from concrete inside to external air outside. Within the framework of drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves these three influencing factors to predict and control the shrinkage cracking of concrete. In this study, moisture diffusion and stress analysis cor responding to drying shrinkage on concrete box culvert are performed with consideration of diffusion coefficient, surface coefficient, and relative humidity of ambient air. From the numerical results, it is found that cracking behavior due to differential drying shrinkage of box culvert shows the different feature according to three influencing factors and the methodology of controlling of drying shrinkage cracks can be suggested from this study.

Cracking Behavior of Concrete Bridge Deck Due to Differential Drying Shrinkage (교량 바닥판 콘크리트의 부등건조수축 균열특성에 관한 연구)

  • Yang, Joo Kyoung;Lee, Yun;Yang, Eun Ik;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.329-335
    • /
    • 2009
  • The purpose of this study is to provide the efficient method and guideline of controlling the cracking in bridge deck concrete due to differential drying shrinkage. Drying shrinkage cracking is mainly influenced by the moisture diffusion coefficient that determines moisture diffusion rate inside concrete structures. In addition to the diffusion coefficient, surface coefficient of concrete surface and relative humidity of ambient air simultaneously affect the moisture evaporation from concrete inside to external air outside. Within the framework of cracking shrinkage cracking mechanism, it is necessary to conceive the numerical analysis, which involves these three influencing factors to predict and control the shrinkage cracking of concrete. In this study, moisture diffusion and stress analysis corresponding to drying shrinkage on bridge deck are performed with consideration of diffusion coefficient, surface coefficient, and relative humidity of ambient air. From the numerical results, it is found that cracking behavior due to differential drying shrinkage of bridge deck concrete shows different feature according to three influencing factors and the methodology of controlling of drying shrinkage cracks can be suggested from this study.

Effects of Moisture Content in Concrete on Diffuse Ultrasound (확산초음파의 콘크리트 함수율에 대한 의존성)

  • Ahn, Eunjong;Shin, Myoungsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.142-147
    • /
    • 2020
  • This study investigates the effects of moisture content on diffuse ultrasound to be applied for the evaluation of micro-structural damage in concrete subjected to various environmental conditions. We monitored diffuse wave parameters for concrete samples in process of water saturation for 5 days. Dried samples were immersed in a water bath, and the change of moisture content in concrete were estimated by measuring the change of mass. For the diffuse wave analysis, a frequency range of 500 kHz, which represents a scattering regime of ultrasound in concrete, was selected. The test results reveal that the ultrasonic diffusivity slightly changed, and the ultrasonic dissipation significantly increased by approximately 120% in the process of water saturation. Therefore, the moisture content in concrete should be considered for the evaluation of micro-structural damage using diffuse wave techniques.

Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete (콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발)

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Concrete is affected by various deterioration factors, such as $CO_2$ and chloride ions from the sea, which cause carbonation and salt attack on concrete. These deterioration phenomena cause steel corrosion in RC structures. Although a great deal of research has been carried out in this area thus far, it is difficult to know the point at which corrosion will occur to a reinforced bar. As the diffusion of deterioration factors depends on the water content in concrete, it is imperative to assess the condition of absorbed water content. A mass measuring method was applied to calculate the absorbed water diffusion coefficient, as well as non-linear finite element method(FEM) analysis. As a result, it was found that W/C and unit water content in concrete mixture affect the diffusion coefficient decision.

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

고농도 용액에 침지시 감자 절편의 동력학적 탈수 모델링에 관한 연구

  • 최동원;신해헌
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2000.12a
    • /
    • pp.52.1-52
    • /
    • 2000
  • 고분자 물질 용액에 감자 절편을 침지시의 탈수현상을 설명하기 위해 (1) 비정상 상태(unsteady state)에서의 확산 식을 초기시간에 대해 단순화시킨 모델, (2) 침지시간별로 수분확산계수와 평균확산계수를 비교하여 탈수현상을 설명하고자 한 모델, (3) 물질이동에 대한 Fick의 제2법칙을 무한평판의 조건에서 전체시간에 대해 전개한 모델 등 3가지 모델을 가정하여 검토한 결과 PEG용액에 감자절편을 침지했을 때 물질이동의 동력학적인 해석은 Fick의 제2법칙에 근거한 모델이 잘 적용되었으며 수분의 확산계수를 추정한 결과 8$\times$$10^{-7}$~4$\times$$10^{-6}$$cm^2$/s 범위였다.위였다.

  • PDF

The Drying Characteristics of Korean Tea-Leaves by Processing Methods (한국산 차엽의 가공방법에 따른 건조특성에 관한 연구)

  • 서재신;허종화;최병민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.2
    • /
    • pp.318-324
    • /
    • 1996
  • 한국산 녹차의 효과적인 가공공정을 규명하기 위한 기초자료를 얻기 위하여, 컴퓨터를 이용한 실험실 규모의 열풍건조장치를 사용하여 채엽시기, 가열방법, 유념 및 건조온도 등에 따른 차엽의 건조상수와 수분 확산계수를 조사한 결과는 다음과 같다. 평균 건조상수는 1번 차엽은 0.356/hr, 2번 차엽은 0.425/hr, 3번차엽은 0.477/hr로서, 건조온도가 높고 채엽시기가 늦을수록 또 유념을 할수록 증가하였고, 건조 전에 열을 많이 받은 시료일수록 컸으며, 생차엽은 0.403/hr, 증자차엽은 0.418/hr, 덖음차엽은 0.438/hr였다. 수분확산계수는 온도가 높고 유념을 할수록 증가하였으며 시료의 두께 및 직경의 영향을 크게 받았는데, 생차엽, 증자차엽 및 덖음차엽의 경우 평균 $1.162$\times$$10^{-8}$\m^2/hr,$ $1.896$\times$$10^{-8}$\m^2/hr$ $1.958$\times$$10^{-8}$\m^2/hr로서$ 생차엽에서 상당히 작았다. 또한 잎과 줄기의 평균확산 계수는 평균 $7.00$\times$$10^{-9}$\m^2/hr와$ $1.130$\times$$10^{-7}$\m^2/hr로서$ 줄기 쪽이 훨씬 컸다. 한편 수분확산의 활성화 에너지는 생차엽, 증자차엽 및 덖음차엽의 경우 평균 9.50, 9.48 및 9.51kcal/mol였고, 잎과 줄기의 경우는 평균 10.33과 8.67kcal/mol였다.

  • PDF