• Title/Summary/Keyword: 수분영향

Search Result 3,665, Processing Time 0.039 seconds

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석)

  • 금영탁;오진원;백성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.67-67
    • /
    • 2004
  • 다공성 물질을 건조하거나 습한 환경에 노출시키면 열과 수분이 외부로 전달된다. 열 및 수분 전달로 인한 은도 및 습도의 변화는 물질 체적을 변화시켜 습열 응력을 유발시킨다 즉 다공성 제품의 품질은 외양뿐만 아니라 건조 공정 시의 온도, 수분함유량, 응력, 변형률 등의 공정변수에 크게 영향을 받는다. 최근까지도 다공성 물질의 생산 공정은 다수의 공정변수를 갖는 복합공정이기 때문에 이들의 영향을 정량적으로 평가하는 것은 매우 까다로워 현장 경험에 기초한 기술자의 노하우에 의존해 왔다.(중략)

  • PDF

The prediction of fine fuel moisture code in future climate change condition (기후변화에 따른 미세연료수분지수의 변화예측)

  • Park, Houng-Sek;Lee, Si-Young;Kwon, Chun-Geun;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.370-374
    • /
    • 2010
  • 기후변화는 우리생활에서 많은 영향을 줄 것으로 예측되고 있다. 산불 또한, 발생 빈도와 강도 면에서 상당한 영향을 받을 것으로 예측된다. 본 연구에서는 기후변화모형(GCM)과 캐나다 산불 기상 지수의 미세연료 수분지수를 활용하여, 우리나라에서 기후변화 후 예측 되는 산불 발생의 가능성과 산불 계절의 변화를 예측하여, 향후 산불 방제 정책의 기본 자료로 삼고자 하였다. 밸런스형 사회가 유지될 경우의 미세 연료 수분 지수의 분석 결과, 산불 계절이 현재 보다 변화하는 것으로 나타나 이에 대한 사전 대비가 필요한 것으로 분석되었다.

  • PDF

Curing Properties of HTPB-based Solid Propellants (HTPB계 고체추진제의 경화 특성에 관한 연구)

  • Su-A Jeon;Jee-Hun Ahn;Hang-seok Seo;Han-Jun Kim;Eui-yong Park
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, the curing characteristics of commonly used Hydroxyl terminated polybutadiene(HTPB)-based solid propellant according to the curing temperature and Equivalent ratio change were investigated. In addition, the effect of curing reaction according to their ratio and content in the Triphenyl bismuth(TPB), Maleic anhydride(MA) and Magnesium oxide(MgO) catalyst systems was confirmed. Finally, moisture was added for each propellant mixing process to check the effect of moisture on propellant curing.

Correlation between Hydrological factors and Carbon Dioxide Flux in Sulma basin (설마천 유역 내 수문 요소와 이산화탄소 플럭스 상관 분석)

  • Kim, Kiyoung;Lee, Yongjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.323-323
    • /
    • 2022
  • 증발산은 지표면과 식물의 엽면적에서 액체가 기체로 기화되는 현상으로 수자원적 측면에서는 지표의 이용 가능한 물이 대기 중으로 손실됨을 의미하며, 증발산 요소는 온도, 습도, 바람의 영향에 의한 변동이 크며 특히 토양수분의 가용성에 큰 영향을 미친다. 국내의 피복 환경은 주로 산지 사면으로 이루어져 있어 증발산량의 특성이 대체적으로 지면의 증발보다 식물의 뿌리로부터 흡수되어 잎의 기공으로 발생하는 증산작용이 지배적이다. 증산작용이 발생하는 메커니즘은 기공을 열어 광합성에 필요한 이산화탄소가 흡수하는 과정에서 물의 손실이 발생하는데 대기 중 이산화탄소의 농도가 높으면 기공이 빠르게 닫혀 증산량도 줄어들어 대기 중으로 물 손실이 줄어드는 현상이 관측된다. 따라서 본 연구에서는 국내 설마천 소유역에서 유출량, 강우량, 토양수분, 증발산량 등과 같은 수문 요소가 이산화탄소 플럭스와 상관성을 분석해보고자 한다.

  • PDF

The Influence of Insect Pollination and Artificial Pollination on Fruit Quality and Economic Profit in the 'Niitaka' Pear (Pyrus pyrifolia Nakai) (화분매개곤충과 인공수분이 '신고' 배의 과실품질과 수익성에 미치는 영향)

  • Lee, Kyeong-Yong;Yim, Sun-Hee;Seo, Ho-Jin;Kim, Sun-Young;Yoon, Hyung-Joo
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.759-771
    • /
    • 2016
  • We compared the fruit set and the quality of the 'Niitaka' pear (Pyrus pyrifolia Nakai) among flowers pollinated by two bee species (Apis mellifera and Bombus terrestris) and pollinated artificial. The artificial pollination rate was 1.3 to 1.9 times higher than the bee pollination rate. Moreover, the artificially pollinated flowers produced fruit that was 5 to 10% higher in weight, 2 to 3% larger in size, and had a higher fruit shape index (L/D) than fruit pollinated by the bees. On economic analysis, net profit from insect pollinator was 93.5 to 97.1% of net profit from artificial pollination. Therefore, artificial pollination is more efficient than bee pollination in 'Niitaka' pear. However, regarding fruit quality and net profit, these results suggest that bee pollination can be an good alternative to artificial pollination in 'Niitaka' pear.

A Moisture Diffusivity Model of Hardening Concrete (경화하는 콘크리트의 수분확산도 모형)

  • Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.31-38
    • /
    • 2005
  • Concrete has higher vapor pressure than its surrounding ambient air immediately after placement. Moisture at concrete surface evaporates to the ambient air to adjust equilibrium of the vapor pressure between them. The moisture inside the concrete moves to the surface because the evaporation at the surface causes gradient of vapor pressure inside the concrete. Plastic cracking, degree of hydration, strength development, and others caused by velocity of the moisture movement significantly influences quality of concrete. In this paper, the moisture diffusivity of early-age concrete was back-calculated using governing equation of the moisture diffusion, and temperature and relative humidity of concrete measured in a laboratory. The moisture diffusivity of the concrete was modeled using the back-calculated moisture diffusivity. The relative humidity of the concrete calculated by finite element method (FEM) using the modeled moisture diffusivity as Input data coincided with the measured relative humidity well.

  • PDF

First-and Second-Order Statistics of Washita'92 Soil Moisture Data (Washita '92 토양수분 자료의 1차원 및 2차원 통계특성)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • In this paper the first- and second order statistics of soil moisture are derived using the Washita '92 data. Also the possible correlations among the soil texture, the brightness temperature, the NDVI and the soil moisture are investigated based in the linear regression study. Only the correlation between the soil moisture and the brightness temperature shows significant values. The soil moisture decay coefficients in time were estimated for each soil type and cross-checked by calculating the last rainfall time before the observation to be about 20days in all different soil types. The second-order statistics of soil moisture based on the correlogram and the spectrum was analyzed to derive the data characteristics and compared with those of the NDVI and the soil texture. This analysis shows that the soil moisture within the highly correlated soil texture field is affected much by the relatively less correlated vegetation field in the Washita area, where the effect of topography is known to be small. The soil moisture media was derived and its parameters were estimated successfully using the first - and sedcond -order statistics.

  • PDF

Root and Top Growth of Panax ginseng at Various Soil Moisture Regime (토양수분 함량별 인삼의 근 및 지상부 생육)

  • 목성균;손석용;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.115-120
    • /
    • 1981
  • Effect of soil water on the growth of Panax ginseng(2 years old) was investigated through pot experiment. the results were as follows. 1. Optimum soil moisture content for root yield appeared to be 65.5% of field capacity(22.1% fresh weight basis) and at 31.5%(10.7% fresh weight basis) relative growth rate was nil. 2. Under suboptimum condition of soil moisture, emergence of shoot and leaf unfolding was delayed. The rate of emergence of shoot and leaf area was also decreased while missing shoot rate was increased. 3. Root yield was positively correlated with leaf area per plant(r=0.91 **), stem diameter (r=0.73**), stem length(r=0.71 **) fresh top yield(r=0.93**) and negatively with missing shoot rate(r=-0.77**). 4. Fresh root weight showed negative correlation(r=-0.80**) with water content of root indicating that tissue is more compact when grown at sufficient water.

  • PDF

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF

Influence of Atmospheric Vapor Pressure Deficit on Fruit Fermentation of Oriental Melon(Cucumis melo L. var makuwa Makino) (대기 증기압차가 참외 발효과 발생에 미치는 영향)

  • Shin, Yong-Seub;Seo, Young-Jin;Choi, Chung-Don;Park, So-Deuk;Choi, Kyung-Bae;Yoon, Jae-Tak;Kim, Byung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Although the relationship between fermentation and factors such as soil water, redox potential, rootstocks and climatic conditions has been reported, its mechanism of fermentation is still not clear. Transpirations of leaf and fruit at different climatic conditions, influence of soil water potential and atmospheric vapor pressure deficit (VPD) on fermentation were evaluated. Transpiration rate decreased with decreasing soil temperature and soil water potential. Low VPD conditions which occurred during low air temperature and high humidity also decreased transipration rate. These data exhibit that fruit water balance affected by various factors relate to transpiration. Our results also indicate that high hydraulic conductance of root, high soil water potential and low VPD condition exert a significant effect on fermention of oriental melon and so called "water filled fruit".