• Title/Summary/Keyword: 수분산폴리우레탄

Search Result 80, Processing Time 0.023 seconds

The Manufacturing Technology of Ecological Foam with Polyurethane Dispersion (수분산 폴리우레탄 수지를 이용한 친환경 Foam 제조기술 연구)

  • Sur, Suk-Hun;Lee, Jae-Yeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.102-102
    • /
    • 2012
  • 수분산 폴리우레탄 수지는 기능성이 뛰어나고 다양한 용도로 쓰임이 많기 때문에, 용제형 폴리우레탄 수지를 이용한 환경문제에 대처할 수 있는 대안으로 그 쓰임이 점차 늘어나고 있다. 그러나 수분산 폴리우레탄 수지는 용제형 폴리우레탄 수지에 비해 물리적 특성이 떨어지는 단점이 있다. 그래서 우수한 물리적 특성을 유지하면서 용제형 폴리우레탄 수지를 대체할 수 있는 환경친화성 폴리우레탄 수지에 대한 연구가 많이 이뤄지고 있다. 최근 산업환경 변화에 순응하는 환경 친화적 소재를 사용하여 자동차, 선박, 철도 등 수송용 인테리어 내장재를 구성하는 기술로서, 난연성 및 기계적 물성 유지 기술, 그리고 실내 쾌적감을 부여하기 위한 감성기술 및 심미적 요소를 부여하는 디자인 기술이 가미된 복합 기능화 기술개발이 요구되고 있다. 기존의 자동차용 시트 제품의 대부분은 습식 PU와 PVC를 사용하고 있고, 제조과정에서 용제와 가소제 사용 등으로 인해 환경적으로 많은 문제점이 있으며, 이를 대체하기 위한 노력이 많은 부분에서 이루어지고 있지만, 마땅히 대체할 소재를 찾지 못하고 있는 실정이다. 본 연구에서 제안하는 Frothing 기법을 이용한 친환경 foam 제조기술은 기존의 습식 PU foam과 PVC foam을 대체할 수 있는 기술로서, PUD foam의 기계적 물성 및 가공성이 보완된다면 상업적 용도로 많은 분야에서 활용될 것으로 판단된다.

  • PDF

Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE) (Epoxy를 사용한 수분산 폴리우레탄의 합성 및 물성)

  • Park, Ji-Yeon;Jeong, Boo-Young;Cheon, Jung-Mi;Ha, Chang-Sik;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • In this study, Waterborne polyurethanes (WPU) using Epoxy group were synthesized with polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA) to improve the hydrolysis resistance and adhesion. In addition, the properties of the synthesized waterborne polyurethane was evaluated through DSC, UTM, adhesion strength. Tg of the synthesized waterborne polyurethane is shown in the vicinity of $-50^{\circ}C$. Tg were increased with as epoxy resin contents increased. The tensile strength was increased as the content of epoxy resin increases, elongation was decreased. Optimum adhesion and hydrolysis-resistance strength were obtained when polyol : epoxy ratio was 99 : 1.

Synthesis and Properties of Linear and Crosslinkable Polyurethane Elastomers (선형과 가교형 수분산 폴리우레탄 엘라스토머의 합성 및 물성)

  • Choi, Sung-Ro;Lee, Su-Min;Kim, Hyun-Min
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2002
  • Linear and crosslinked polyurethane dispersions were synthesized with 2,4-toluene diisocyanate, dimethylol propionic acid, polyoxypropylene glycol and polyoxypropylene glycerin. The structures of these polyurethanes were characterized by $^1H-NMR$ and FT-IR and the properties were measured with DSC, TGA, Instron and AFM etc. In case of linear polyurethane dispersion, the particle size, viscosity and glass transition temperature of polyurethanes increased with higher molecular weight of polyol and the degree of crosslinking. The crosslinked polyurethanes which contains more than 15% of polyoxypropyleneglycerin didn't from dispersion, when mixtures by polyoxypropyleneglycol and polyoxypropyleneglycerin were used as polyols. Thus, we synthesized crosslinked polyurethanes with 5%, 8%, 13% and 15% weight percents of polyoxypropylene glycerin as polyol mixtures.

Physical Properties of Water Dispersion Polyurethane Resin Based on Ammonium Poly Phosphate and HMDI (폴리인산 암모늄과 HMDI 기반으로 제조된 수분산 폴리우레탄 수지의 물리적 특성 연구)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1619-1626
    • /
    • 2020
  • In this study, the physical properties of water-dispersible polyurethane resins synthesized with polyammonium phosphate and HMDI were studied by coating film samples and full-grain surfaces. Solvent resistance was found to be unchanged in all samples, and in terms of tensile strength, DPU-AP3 (1.887 kgf/㎟) containing the most ammonium polyphosphate showed the lowest physical properties. The elongation rate was measured as 54 8% in the sample containing a large amount of ammonium polyphosphate. Abrasion resistance was measured as 548 mg.loss of a sample containing a lot of ammonium polyphosphate, and it was confirmed that the physical properties of the blended resin of ammonium polyphosphate and water-dispersible polyurethane were changed.

Synthesis and Properties of Eco-friendly Waterborne Polyurethane according to Bio-polyol Contents (바이오폴리올 함량에 따른 친환경 수분산 폴리우레탄의 합성 및 특성)

  • Chang, Yoon Hee;Jeong, Boo-Young;Cheon, JungMi;Chun, Jae Hwan;Huh, PilHo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • In this study, we report on the synthesis and properties of eco-friendly waterborne polyurethane (WPU) according to bio-polyol contents. It was successfully synthesized by the different polyester polyol (DT-1040) and castor oil based polyol (COP) ratios. The glass transition temperature (Tg) of the synthesized bio polyol based waterborne polyurethane was around -70 ℃ and -30 ℃, and it was confirmed that the Tg range was widened as the COP content increased. In addition, as the COP content increased, the tensile strength decreased, and optimum adhesive strength showed when DT-1040:COP ratio was 7:3.

The Development and Trend of Eco-Friendly Water-Dispersible Polyurethane Field. (친환경 수분산 폴리우레탄 분야의 개발과 발전 동향)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1533-1542
    • /
    • 2021
  • Eco-friendly polyurethane can be defined as a highly utilized material used in various fields. The various structural properties of the synthesis of isocyanates and polyols provide versatility and customization for use in the manufacturing field. The characteristics of polyurethane vary widely from soft touch coatings to hard building materials like rocks. These mechanical, chemical and biological properties and ease of alignment are drawing tremendous attention not only in the field of research but also in related industries. In order to improve the performance of water-dispersible polyurethane materials, it can be derived through processes such as adjusting the blending of raw materials and adding additives and nanomaterials. This study highlights the basic chemical structure of eco-friendly water-dispersible polyurethane in the fields of medical science, automobiles, coatings, adhesives, paints, textiles, marine industries, wood composite materials, and clothing.

A Study on the Property Changes by Trihydric Alcohol Addition Reaction and Polyurethane Dispersion Synthesis for Buffalo Leather Coatings (Buffalo Leather 코팅에 대한 수분산 폴리우레탄의 합성 및 3가 알콜 첨가에 의한 물성변화 연구)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.623-630
    • /
    • 2015
  • Prepared polyurethane resin for buffalo leather coating on surface was synthesized with addition reaction glycerol which had different mole ratio. Mechanical properties of the synthesized polyurethane resin were measured by the SEM, FT-IR, UTM. Growing concerns in the evnironment-friendly polymer resin, we have synthesized low late obtained solvent water dispersion resin to be coating on buffalo leather. The increase of aliphatic trihydric alcohol glycerol mole %, abrasion resistance and tensile strength had demonstrated reduce properties. On the contrary, elongation and flexibility properties had highly increased. In the result of toluene solvent resistance, there was no effect of increased or decreased by the ratio of glycerol mole %.

Mechanical Properties and Synthesis of Polyurethane Dispersion by Glycerol for Vegetable Leather Surface Coatings (Vegetable Leather 표면코팅에 대한 Glycerol을 이용한 수분산 폴리우레탄의 합성 및 기계적 특성)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.100-107
    • /
    • 2015
  • Prepared polyurethane resin for vegetable leather coating on surface was synthesized with glycerol which had different mole ratio. Mechanical properties of the synthesized polyurethane resin were measured by the SEM, FT-IR, UTM. Growing concerns in the evnironment-friendly polymer resin, we have synthesized low late obtained solvent water dispersion resin to be coating on vegetable leather. The increase of aliphatic trihydric alcohol glycerol mole %, abrasion resistance and tensile strength had highly stronger in intensity and longer durability. On the contrary, demonstrated reduce properties of elongation and flexibility. In the result of toluene solvent resistance, there was no effect of increased or decreased by the ratio of glycerol mole %.

Effect of Addition Amounts of Hydroxyethyl Methacrylate and Methyl Methacrylate on the Properties of Waterborne Polyurethane-Acrylic Hybrid Solutions (Hydroxyethyl Methacrylate와 Methyl Methacrylate의 첨가량 변화가 수분산 폴리우레탄-아크릴 혼성 용액의 물성에 미치는 영향)

  • Kim, Byung Suk;Yoo, Byung Won;Lee, Myung Goo;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.632-638
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, waterborne polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different amounts of the mixture of acrylate monomers, HEMA (2-hydroxyethyl methacrylate) and MMA (methyl methacrylate). As a result, the average particle size of waterborne polyurethane-acrylic hybrid solutions was increased with increasing the addition amounts of acrylate monomers. Also, the prepared coating films from waterborne polyurethane-acrylic hybrid solutions showed better abrasion resistance and chemical resistance than those of pure PUD.

Preparation of Waterborne Polyurethane-Acrylic Hybrid Solutions from Different Types of Acrylate Monomers (아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄-아크릴 혼성 용액의 제조)

  • Kim, Byung Suk;Hong, Min Gi;Yoo, Byung Won;Lee, Myung Goo;Lee, Woo Il;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.410-416
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:PETA mixture had the strongest abrasion resistance among several types of acrylate mixtures.