• Title/Summary/Keyword: 수분도

Search Result 9,965, Processing Time 0.034 seconds

Quality characteristics of different parts of garlic sprouts produced by smart farms during growth (스마트팜 생산 새싹마늘의 부위별 및 생육 기간에 따른 품질 특성)

  • Yu-Ri Choi;Su-Hwan Kim;Chae-Mi Lee;Dong-Hun Lee;Chae-Yun Lee;Hyeong-Woo Jo;Jae-Hee Jeong;Imkyung Oh;Ho-Kyung Ha;Jungsil Kim;Chang-Ki Huh
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.272-286
    • /
    • 2023
  • Garlic sprouts can provide data on functional and food processing materials. This study compared the leaves, bulbs, and roots of garlic sprouts grown on smart farms during two growth periods (20 and 25 days). In addition, data for garlic bulbs grown in open fields were presented as reference materials. All garlic sprouts' total free sugar content decreased as the growth period increased. All plant parts' total organic acid content decreased as the growth period progressed, except for the root section. Potassium, phosphorus, and sulfur content increased during growth in all parts of the garlic sprouts. Alliin content decreased in all parts of the plant over time, whereas thiosulfinate content increased in the roots but decreased in the leaves and bulbs. Total polyphenol content increased in all parts of the plant during the growth period, except for the bulb, whereas the flavonoid content did not change significantly over time. The 2,2-diphenyl-1-picrylhydrazy (DPPH) and 2,2'-azinobis (3-ethylben-zothiazoline 6-sulfonate) (ABTS) free radical scavenging activities, as well as the superoxide dismutase (SOD)-like activity of garlic sprouts were 37.45-65.47%, 59.12-89.81%, and 89.52-98.59%, respectively. These activities tend to decrease during the growth period. Here, we showed that garlic sprouts have higher levels of functional substances and physiological activities than general garlic sprouts. It was also determined that a growth period of 20 days was suitable for garlic sprouts. Data for research on functional and food-processing materials can be obtained by analyzing garlic sprouts produced by smart farms.

Changes in quality characteristics of makjang depending on fermentation location and complex starters (발효 장소와 복합 종균에 따른 막장의 품질 특성 변화)

  • Jieon Park;Myeong-Hui Han;Woosoo Jeong;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1056-1071
    • /
    • 2023
  • This study aimed to investigate the quality and microbial population changes for 90 days under two fermentation conditions, outdoors and indoors (35℃), with starters (single or mixed) in soybean paste. Bacillus velezensis NY12-2 (S1), Debaryomyces hansenii D5-P5 (S2), Enterococcus faecium N78-11 (S3), and their mixtures (M) were used for the makjang fermentation. The content of amino-type nitrogen among the makjang samples was highly shown in the indoors, followed by M, S3, and S2. The glutamic and aspartic acid contents in the M sample fermented in the indoors showed the highest values of 867.42±77.27 and 243.20±15.79 mg/g, respectively. By the electronic tongue analysis, the M sample fermented in the indoors exhibited lower saltiness and higher umami than the others. Consequently, we expect that using mixed strains, such as Bacillus, Debaryomyces, and Enterococcus, under constant conditions showed potential to the quality improvement of soy products.

Analysis of Changes in Pine Forests According to Natural Forest Dynamics Using Time-series NFI Data (시계열 국가산림자원조사 자료 기반 자연적 임분동태 변화에 따른 소나무림의 감소 특성 평가)

  • Eun-Sook Kim;Jong Bin Jung;Sinyoung Park
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.40-50
    • /
    • 2024
  • Pine forests are continuously declining due to competition with broadleaf trees, such as oaks, as a consequence of changes in the natural dynamics of forest ecosystem. This natural decline creates a risk of losing the various benefits pine trees have provided to people in the past. Therefore, it is necessary to prepare future forest management directions by considering the state of pine tree decline in each region. The goal of this study is to understand the characteristics of pine forest changes according to forest dynamics and to predict future regional changes. For this purpose, we evaluated the trend of change in pine forests and extracted various variables(topography, forest stand type, disturbance, and climate) that affect the change, using time-series National Forest Inventory (NFI) data. Also, using selected key variables, a model was developed to predict future changes in pine forests. As a results, it showed that the importance of pine trees in forests across the country has decreased overall over the past 10 years. Also, 75% of the sample points representing pine trees remained unchanged, while the remaining 25% had changed to mixed forests. It was found that these changes mainly occurred in areas with good moisture conditions or disturbance factors inside and outside the forest. In the next 10 years, approximately 14.2% of current pine forests was predicted to convert to mixed forests due to changes in natural forest dynamics. Regionally, the rate of pine forest change was highest in Jeju(42.8%) and Gyeonggi(26.9%) and lowest in Gyeongbuk(8.8%) and Gangwon(13.8%). It was predicted that pine forests would be at a high risk of decline in western areas of the Korean Peninsula, including Gyeonggi, Chungcheong, and Jeonnam. This results can be used to make a management plan for pine forests throughout the country.

Comparison of the Nutritional and Functional Compounds in Naked Oats (Avena sativa L.) Cultivated in Different Regions (재배지역 차이에 따른 쌀귀리 영양성분 및 기능성 성분 비교)

  • Ji-Hye Song;Dea-Wook Kim;Hak-Young Oh;Jong-Tak Yun;Yong-In Kuk;Kwang-Yeol Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.402-412
    • /
    • 2023
  • To cope with climate change, we compared the quality of naked oats (Avena sativa L.) cultivated in different regions. Naked oats were collected from domestic farms in different cultivation regions grouped as G1 and G2 for 3 years (2020-2022). The appearance, quality, and nutritional and functional compounds in the samples were assessed. In terms of appearance quality, the brightness and yellowness of the samples from the G1 region were significantly lower than those of the samples from the G2 region in 2020; however, no differences were observed between cultivation regions in the other 2 years. The results of testing the vitality of naked oats seeds showed that the electrical conductivity value was significantly lower in the samples from the G1 region than in those from the G2 region only in 2022. Among the nutritional components, moisture content was higher in the G2 region than in the G1 region over all 3 years, and the crude protein content was significantly higher in the G2 region than in the G1 region over all years. Carbohydrate content was significantly higher in the G1 region than in the G2 region in all 3 years and was inversely proportional to the crude protein content. The crude fat content tended to be significantly higher in the G1 region than in the G2 region, except in 2022. The levels of beta-glucan, a functional compound rich in naked oats, ranged between 3.4% and 4.2%, and except in 2020, there was no significant difference between cultivation regions. In addition, the content of avenanthramides, representative functional compounds that exist only in oats, was assessed. Over 2 years, in 2021 and 2022, the avenanthramide content was in the range of 2.4-20.7 ㎍/g and tended to be significantly higher in the G2 region than in the G1 region in both years. According to a survey of the average and minimum temperatures during the growing season of naked oats from 2020 to 2022, the average and minimum temperatures in January in the G2 region, which is the cultivation-limit area, were similar to those in Haenam in the G1 region. In conclusion, differences in nutritional and functional compounds were observed in naked oats grown in different cultivation areas. Therefore, considering the cultivation area of naked oats is expanding because of climate change, changes in the compounds that affect quality should be investigated.

Effects of the Double Cropping System on Wheat Quality and Soil Properties (밀-하작물 작부체계가 밀 품질 및 토양에 미치는 영향)

  • Jisu Choi;Seong Hwan Oh;Seo Young Oh;Tae Hee Kim;Sung Hoon Kim;Hyeonjin Park;Jin-Kyung Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • To achieve self-sufficiency in domestic wheat (Triticum aestivum L.), an increase in high-quality wheat production is essential. Given Korea's limited land area, the utilization of cropping systems is imperative. Wheat is compatible with a double cropping system along with rice, soybeans, and corn. Data on alterations in wheat quality following summer crop cultivation is required. This study investigated the impact of cultivating preceding crops such as rice, soybeans, and corn in a wheat cropping system. The analysis focused on the influence of these preceding crops on wheat growth, quality, and soil characteristics, elucidating their interrelationships and impacts. While there were no differences in growth timing and quantity during wheat growth, a significant variance was observed in stem length. Protein content, a key quality attribute of wheat, displayed variations based on the intercropped crops, with the highest increase observed in wheat cultivated after soybeans. Soil moisture content also exhibited variations depending on the intercropping system. The wheat-rice intercropping system, which requires soil moisture retention, resulted in greater pore space saturation in comparison to other systems. Moreover, soil chemical properties, specifically phosphorus and calcium levels, were influenced by intercropping. The highest reduction in soil phosphorus content occurred with soybean cultivation. These findings suggest that intercropping wheat with soybeans can potentially enhance wheat quality in domestic varieties.

Toxicity study of cadmium and copper on riparian collembolan species Yuukianura szeptyckii (Neanuridae) (수변 서식 톡토기 Yuukianura szeptyckii (Neanuridae)에 대한 카드뮴과 구리 독성 연구)

  • Hagyeong Kim;Jimin Shin;Dohyeon Jeong;Juyeong Jeong;Yongeun Kim;June Wee;Kijong Cho;Yun-Sik Lee
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • The ecosystem provides a diverse array of environmental conditions for organisms, and only those that are capable of successfully adapting to these conditions within their habitats can endure, thrive, and proliferate. Further, the environmental conditions within these habitats can significantly affect the bioavailability of chemicals that are introduced therein, thus resulting in varied adverse impacts on the organisms. The present study aims to evaluate the sensitivity of Yuukianura szeptyckii - a species adapted to riparian - to heavy metals following ISO guideline 11276, with the objective of assessing its potential as an indicator species for ecotoxicological evaluations in riparian habitats. The findings revealed that cadmium and copper both had significant toxic effects depending on their concentrations. For cadmium, the LC50 was 280 mg kg-1, EC50 was 66 mg kg-1, and NOEC and LOEC were 25 and 50 mg kg-1, respectively. For copper, the LC50 was 911 mg kg-1, EC50 was 151 mg kg-1, and LOEC was 50 mg kg-1. Comparative analysis with previous results for the international standard species Folsomia candida and the domestic standard species Allonychiurus kimi indicated that Y. szeptyckii exhibited even greater sensitivity to toxicity values. The adverse effects on survival and reproduction were closely associated with the influx concentration of heavy metals in their bodies. Altogether, the results suggest that Y. szeptyckii is a sensitive species for ecotoxicological assessments in riparian habitats, thus making it suitable as an indicator species, particularly in riparian ecosystems that are characterized by relatively high humidity conditions.

Analysis and Conservation of Sheet Music Featuring the National Anthem of Korea with Lyrics in Korean, Chinese, and English - Focusing on Light Blue Pigment Analysis and Conservation Treatment - (한중영문중국판 한국애국가 악보의 분석 및 보존 - 밝은 청색안료 분석과 보존처리를 중심으로 -)

  • BAE Subin;PARK Serin;LEE Hanhyoung;JEONG Heewon
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.104-114
    • /
    • 2024
  • Sheet Music of the National Anthem of Korea with Lyrics in Korean, Chinese, and English is a four-sided sheet of paper folded in half. It was first introduced to Korea on November 12, 1945, by Kim Ku, the president of the Provisional Government. The sheet music was published in three languages and is a valuable document for researching the evolution of the anthem and its history. Although it was published in large quantities at the time, it is currently known as the only in Korea and has been designated and managed as a national registered heritage. The sheet music was not significantly damaged, but discoloration and physical damage suggested raised the need for conservation treatment. A pre-treatment examination of the conservation condition revealed that the artifact was received on archival film and had been folded in half for many years, leaving it vulnerable to tears at the top and bottom of the folds and partial wear and tear at the edges. In addition, the pigments used on both sides of the sheet had discolored and transferred to the opposite side. Portable X-ray fluorescence (XRF) analysis was conducted to investigate the pigments used in the sheet music cover, specifically focusing on red, black, and light blue pigments. Titanium (Ti) was detected in the light blue pigment, characterized by a powdery coloring layer. The remaining colors in the printed form were difficult to sample and could not be analyzed further. The light blue sample underwent additional analysis using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and Raman spectroscopy. Cross-validation of the results with the artifact's historical context suggested that the bright blue color observed in the 1945 sheet music is likely due to the use of anatase white pigment, rather than rutile. Furthermore, the bright blue pigment is believed to be a blend of phthalocyanine blue, a synthetic pigment introduced in 1936. Fiber analysis revealed longitudinal striations in the hemp fibers and twists in the cotton fibers, suggesting that the paper was made from a mixture of cotton and hemp fibers. Based on the findings of the condition survey, the conservation treatment for the artifact focused on minimizing moisture to avoid stressing the paper and reinforcing the physically vulnerable areas. The reinforcement paper was dyed to match the base of the artifacts, pre-coated repair paper was used for conservation, and appropriate folders and boxes were made for storage after treatment. This study is expected to serve as an important foundational resource on the materials used in modern and contemporary records.

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

Analysis of Fruit Quality and Productivity of 'Kawanakajima Hakuto' Peach according to the Different Irrigation Starting Point (관수 개시점에 따른 복숭아 '천중도백도'의 과실 품질 및 생산성 변화 분석)

  • Seul Ki Lee;Jung Gun Cho;Jae Hoon Jeong;Dongyong Lee;Jeom Hwa Han;Si Hyeong Jang;Suhyun Ryu;Heetae Kim;Sang-Hyeon Kang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • This study was conducted to determine the optimal irrigation starting point by analyzing tree growth, physiological responses, fruit quality, and productivity in peach orchards. Seven-year-old 'Kawanakajima Hakuto' peach trees were used in an experimental field (35°49'30.4"N, 127°01'33.2"E) located within the National Institute of Horticultural and Herbal Science located in Wanju-gun, Jeollabuk-do. The irrigation starting point was set with four levels of -20, -40, -60, and -80 kPa from June to September 2022. While there were no significant differences in increase of trunk cross-section area and leaf area among treatments, shoot length and diameter decreased in the -80 kPa and -20 kPa treatments. The photosynthetic rate measured in August was highest for -60 kPa (17.7 μmol·m-2·s-1), followed by -40 kPa (15.6 μmol·m-2·s-1), -20 kPa (14.5 μmol·m-2·s-1) and -80 kPa (14.0 μmol·m-2·s-1). SPAD value measured in May and August was lower in the -80 kPa and -20 kPa treatments than in the -60 kPa and -40 kPa treatments. The harvest date reached three days earlier in the -20 kPa treatment compared to other treatments. The fruit weight was highest in the -60 kPa (379.1 g), followed by -40 kPa (344.0 g), -80 kPa (321.0 g) and -20 kPa (274.9 g). Firmness was the lowest in the -20 kPa treatment. The soluble solid content was highest in the -60 kPa treatment (13.3°Bx).The ratio of marketable fruits was highest in the -60 kPa treatment (50.7%) and lowest in the -80 kPa treatment (23.4%). In conclusion, we suggest that setting the irrigation starting point at -60 kPa could improve the fruit quality and yield in peach orchards.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.