• Title/Summary/Keyword: 수문지질도

Search Result 181, Processing Time 0.03 seconds

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Hydrological Characteristics of Subsurface Stormflow through Soil Matrix and Macropores on forested Hillslopes (산지 사면에서 토양체와 대공극을 통해 발생하는 지표하 호우류의 수문학적 특성)

  • Kim, Kyong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.777-785
    • /
    • 1997
  • This study was conducted to clarify the hydrological characteristics of subsurface flow through a soil matrix and macropores. The research facility was set up in a 20m-1ong trench excavated down to bedrock at the base of a hillslope in the Panola catchment under USGS Georgia district. 13 macropores were found on the trench face and 6 major macropores were monitored. Matrix and macropore flow were measured during 95.5mm rainfall on March, 6 to 7. 1996. Macropore flow had great influence on formation of peak flow because the delivery time to Peak flow of macropore flow were faster about 10hrs than those of matrix flow. Matrix flow continued to recess for 3 days. On the other hand, macropore flow stopped within 12hrs after the event ceased. This means that matrix flow controls the recession part. The spatial variations of matrix and macropore flow between each trough and collector were very large by a wide range of 8,655.3 $\ell$ to 17.8 $\ell$ . The bed rock surface topography relates closer with the spatial variations of the flow than the surface one.

  • PDF

Rainfall Partitioning in a Small Catchment of a Monogenetic Volcano in Jeju Island: Case Study on Eoseungsaeng-oreum of Mount Halla (제주도 단성화산 소유역에서의 강우의 분배 - 한라산 어승생오름을 사례로 -)

  • An, Jung-Gi;Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.3
    • /
    • pp.212-223
    • /
    • 2008
  • The rainfall partitioning in a monogenetic volcano has been analysed using the hydrological data of a small catchment on Eoseungsaeng-oreum of Mount Halla and the meterological data of Eorimok Automated Weather System. The experimental catchment extends from 965 m to 1,169 m in altitude, and has an catchment area of $51,000\;m^2$ Eoseungsaeng-oreum is the scoria cone predominantly covered with Carpinus laxiflora and Quercus serrata. The analyzed periods are April 30 to September 12 and October 7 to November 19, 2007. The experimental catchment exhibits the total precipitation of 2,296.5 mm. Surface runoff amounts to 465 mm that is equivalent to 20.2% of the precipitation. By contrast, evapotranspiration accounts for 25.9% of the precipitation, and the remnant of 1,236.5 mm deep1y percolates underground through a basement. The rainy summer season, in particular, shows the highest deep percolation ratio of 62.2%. The deep percolation ratio of the experimental catchment is at 1east more two times than the ratio of a gneiss basin in Korea Peninsular. It has suggested that the experimental catchment is characterized by the higher portion of deep percolation in rainfall partitioning which reflects the highly permeable lithology in Jeju Island.

  • PDF

Analysis of GIUH Model using River Branching Characteristic Factors (하천분기 특성인자를 고려한 지형학적 순간단위도 모형의 해석)

  • Ahn, Seung-Seop;Kim, Dae-Hyeung;Heo, Chang-Hwan;Park, Jong-Kwon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.4
    • /
    • pp.9-23
    • /
    • 2002
  • The purpose of this research was to develop a model that minimizes time and money for deriving topographical property factors and hydro-meteorological property factors, which are used in interpreting flood flow, and that makes it possible to forecast rainfall-runoff using a least number of factors. That is, the research aimed at suggesting a runoff interpretation method that considers the river branching characteristics but not the topographical and geological properties and the land cover conditions, which had been referred in general. The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM). According to the result of examining calculated peak runoff, the Clark Model and the GIUH Model showed relative errors of 1.9~23.9% and 0.8~11.3%, respectively and as a whole, the peak values of hydrograph appeared high. In addition, according to the result of examining the time when peak runoff took place, the relative errors of the Clark Model and the GIUH Model were 0.5~1 and 0~1 hour respectively, and as a whole, peak flood time calculated by the GIUH Model appeared later than that calculated by the traditional Clark Model.

  • PDF

An Analysis of Landform Type of Traditional Space with the National Cultural Heritage in the Damage of Gyeongju Earthquake (경주지진피해로 본 국가지정문화재를 보유한 전통공간의 지형적 입지유형 분석)

  • Koo, Min-Ah
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to analyze the geographical location information data and the damage trends according to the type of landform for the study of various cultural properties in 44 traditional places with national designated cultural properties damaged by the racing earthquake on September 12, 2016. The landform type was the most enclosed type, and the location type was more frequent in the surrounding area, such as urban and rural areas. The waterside type was located along rivers, rivers, valleys, lakes, and oceans except for the top of the mountain, but this area was found to be vulnerable to earthquakes, It is understood that it should be referred from cultural property management the side. 26 of the total 44 were temples. The elevation and slope increased with increasing of the flat type, the background type, the enclosed type, the mountain type, and the top type. Most often located on 1-20 % slopes, with the slope facing south more often than not. Within the 10 km range from the epicenter, 23% were concentrated, within the range of nearly 65 km, the background type was closest, and was concentrated in the northeast and southwest from the epicenter. In this study, it is meaningful to analyze earthquake damage in various aspects from the viewpoint of traditional space which is a landscaping cultural property and it will be used for planning, designing and managing traditional spaces.

Water Balance of a Small Catchment in the Subalpine Grassland of Mt. Halla, Southern Korea (한라산 아고산 초지대 소유역의 물수지)

  • An Jung-Gi;Kim Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.404-417
    • /
    • 2006
  • In order to clarify some characteristics of hydrological cycle in the subalpine zone of Mt. Halla, water balance has been analysed using hydrological data of a first-order drainage basin around Mansedongsan and meterological data of Odeung AWS. The experimental basin extends from 1,595 m to 1,645 m in altitude and has an catchment area of 1.34 ha. It is largely underlain by trachybasalt and covered with sasa bamboo and sedges. Hydrological observations were carried out every 20 minutes from April 15 to September 19, 2004. The basin shows the total precipitation of 3,074 m that is 1.6 to 3 times of those in coastal and intermontane regions. Surface runoff amounts to 850 mm that is equivalent to 27.6% of the precipitation. By contrast, evapotranspiration only accounts for 14.2% of the precipitation, and the remnant of 1,790 m penetrates underground through a basement. The basin is located in the subalpine zone and then it has a high rainfall intensity as well as a large rainfall due to frequent orographic precipitation. But surface runoff usually dose not exceed 30% of the rainfall while Percolation demonstrates about 2 times of the runoff. Compared with granite or gneiss basins in Korea Peninsula, the experimental basin is characterized by a higher portion of percolation in water balance. And it is probably related to the highly permeable basaltic lavas in Jeju Island which are also overlain by porous volcanic soils.

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.

A study on origin of fresh water in fresh and salt water interface (담·염수 경계면의 담수 기원에 관한 연구)

  • Kim, Byung-Woo;Choi, Ilhwan;Baek, Keon-Ha;Ryu, Kyongsik;Lee, Sang-Wuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.217-217
    • /
    • 2019
  • 해안과 하천이 위치해 있는 낙동강하구의 담 염수 경계면 추적 연구에서 담 염수 경계면의 담수기원특성을 분석하기 위해서는 담 염수 경계면을 이루는 담수의 기원이 하천 혹은 지하수 인지를 규명하는 것이 매우 중요하다. 담 염수 경계면에 있는 담수는 일반적으로 하천과 지하수에 의한 것으로, 낙동강하구 일원을 대상으로 지하수공 내 해수침투 여부 파악을 위해 화학적(유기물) 분석을 실시하였다. 이와 아울러 낙동강하구 일원에서 담 염수 경계면에서 채취한 수질시료의 담수기원을 분석하기 위하여 K-water연구원 수질안전센터에 지하수공 7개지점(BH-1~7호공)의 심도별 물시료 2~4개지점(총 23개 지점), 하천(1개 지점), 해수 및 해안유출수(각 1개 지점)를 포함한 26개 시료를 LC-OCD(Liquid Chromatography-Organic Carbon Detector)로 분석하였다. LC-OCD 분석결과 특성은 기본적으로 유기물질이 물에서 유래한 aquagenic 혹은 토양층에서 유래한 pedogenic 유기물질 인지에 달려있다. 댐 또는 하천에서 pedogenic 유기물의 농도는 일반적으로 유역분지의 수문 또는 수리지질학적 경로에 의존한다. pedogenic 유기물들은 주로 상대적으로 작은 분자량을 갖는 친수성, 높은 사슬밀도 및 내화성 분자특성을 갖는 펄빅산으로 구성된다. aquagenic 유기물질은 수생 식물성 생물이나 플랑크톤의 분해 산물로서 세포벽에서 유래된 peptidoglycans와 고분자량의 polysaccharides 등을 포함한다(Chio & Jung, 2008; Buffle, 1988). 담 염수 경계면 추적을 위한 7개 관측공의 심도별 수질시료는 하천, 해수, 그리고 해안유출수의 용존유기탄소를 분석하기 위하여 LC-OCD로 정밀분석하였다. 그 결과, humic, 휴믹물질의 산화물질인 building blocks, 생물고분자 물질(bio-polymers), neutrals, acids로 분석되었으며, 일반적인 자연유기물질의 기원은 pedogenic과 aquagenic 유기물질로 분류된다. IHSS 표준물질 분석 등을 통한 SUVA 값으로부터 자연유기물질의 기원정보를 제공하는 HS-Diagram으로 도시한 결과, 2018년 11월 2일 조사한 26개의 원수시료 전체는 pedogenic fulvic acid〉aquagenic fulvic acid으로 하천의 기원이 우세한 것으로 분석되었다. BH-1호공과 BH-6호공의 특정 1개구간 GL.-6m를 제외한 모든 구간에서 aquagenic FA의 지하수 기원으로 분석되었으며, 나머지 지하수공(BH-2, 3, 4, 5, 7)과 하천 및 해안유출수는 유역분지 수문학적 경로인 pedogenic FA의 하천 기원의 담수인 것으로 분석된다.

  • PDF

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.

Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River (낙동강 하류 하천구조물 건설 전후의 충적층 지하수위 시계열 특성 비교)

  • Kim, Gyoo-Bum;Cha, Eun-Jee;Jeong, Hae-Geun;Shin, Kyung-Hee
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.105-115
    • /
    • 2013
  • Increasing the river cross-section by barrage construction causes rises in the average river water levels and discharge rates in the rainy season. The time series patterns for groundwater levels measured at 23 riverside monitoring wells along the lower Nakdong River are compared for two cases: before and after water-filling at the Changnyeong-Haman Barrage. Monthly average groundwater levels indicate a distinct increase in groundwater levels in the upstream riverside close to the barrage. River-water level management by barrage gate control in August, during the rainy season, resulted in a 0.1 m decrease in groundwater levels, while water-filling at the barrage in December caused a 1.3 m increase in groundwater levels. The results of hierarchical cluster analysis indicate that seven groundwater monitoring wells and river water levels were in the same group before barrage construction, but that this number increased to 14 after barrage construction. Principal component analysis revealed that the explanation power of two principal components corresponding to river fluctuation, PC1 and PC2, was approximately 82% before barrage construction but decreased to 45% after construction. This finding indicates that the effect of the river level component that contributes to change in groundwater level, decreases after barrage construction; consequently, other factors, including groundwater pumping, become more important. Continuous surveying and monitoring is essential for understanding change in the hydrological environment. Water policy that takes groundwater-surface water interaction into consideration should be established for riverside areas.