• Title/Summary/Keyword: 수명예측모델

Search Result 300, Processing Time 0.026 seconds

Creep Characteristics Verification of FE Model for SnPb Solder (SnPb 솔더에 대한 유한요소모델의 크리프 특성 검증)

  • Han, Chang-Woon;Park, No-Chang;Oh, Chul-Min;Hong, Won-Sik;Song, Byeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • The heat sink system for a main board in a network server computer is built on printed circuit board by an anchor structure, mounted by eutectic SnPb solder. The solder creeping is caused by a constant high temperature condition in the computer and it eventually makes fatal failures. The FE model is used to calculate the stress and predict the life of soldered anchor in the computer. In the model, Anand constitutive equation is employed to simulate creep characteristics of solder. The creep test is conducted to verify and calibrate the solder model. A special jig is designed to mitigate the flexure of printed circuit board and to get the creep deformation of solder only in the test. Test results are compared with analysis and calibration is conducted on Anand model's constants. Precise life prediction of soldered anchor in creep condition can be performed by this model.

Statistical analysis of NTNU test results to predict rock TBM performance (TBM 굴진성능 예측을 위한 NTNU 시험결과의 분석)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.243-260
    • /
    • 2011
  • To predict TBM performance in design stage is indispensable for its successful application. The NTNU model, one of the representative TBM performance prediction models uses two distinct parameters such as DRI and CLI obtained from three different tests on bored rock cores. Based on DRI and CLI, it is possible to predict TBM advance rate and cutter life in the NTNU model. In this study, NTNU testing methods and their related testing equipments were introduced to measure DRl and CLI for the NTNU model. Then, in order to derive their relationships, the two key parameters measured for 39 domestic rocks were compared with physico-mechanical properties of rock such as uniaxial compressive strength and quartz content. Lastly, the experimental results were also compared with NTNU database to verify their reliability.

Fatigue Life Estimation of Shot Peened Metal Using Accelerated Life Testing (가속수명시험법을 이용한 쇼트피닝가공 금속의 피로수명예측)

  • Kang, Jin-Shik;Nam, Ji-Hun;Lee, Jae-Heon;Cheong, Seong-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.184-189
    • /
    • 2004
  • Shot peening process is used as one of the various kinds of techniques to improve the fatigue properties. However, to obtain fatigue properties of metal materials, many efforts and time are needed. Because the fatigue life of shot peened metals increases highly. In this paper, fatigue properties of shot peened Al 7075-T6 are estimated using the fundamental of accelerated life test to reduce the experimental. Experimental results show that the estimated life data almost agree with actual rotary bending fatigue test data within 7% error.

  • PDF

Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor (1Cr1Mo1/4V 터빈 로터강의 크리프 손상 모델에 관한 연구)

  • Choi, Woo-Sung;Fleury, Eric;Song, Gee-Wook;Kim, Bum-Shin;Chang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed.

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning (선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정)

  • Ju-Pyo Hong;Yun Seong Kang;Tae Young Ko
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.39-58
    • /
    • 2024
  • Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

Methodology of a Probabilistic Pavement Performance Prediction Model Based on the Markov Process (확률적 포장 공용성 예측모델 개발 방법론)

  • Yoo, Pyeong-Jun;Lee, Dong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.1-12
    • /
    • 2002
  • Pavement Management System has a special purpose that the rehabilitation strategy applied on pavement should be executable in view of technical and economical point after new pavement open to the traffic. To achieve that purpose, a reliable pavement performance prediction model should be embeded in the system. The object of this study is to develop a probabilistic pavement performance prediction model for evaluating asphalt pavements based on the Markov chain concept. In this paper, methodology of the Markov chain modeling principle is explained, and the application of this model to asphalt pavement is described. As the results, transition matrics for predicting asphalt pavement performance are obtained, and also performance life is estimated quantitatively by this system.

  • PDF

Modelling The Population Dynamics of Laodelphax striatellus Fallén on Rice (벼에서 애멸구(Laodelphax striatellus Fallén) 개체군 밀도 변동 예측 모델 구축)

  • Kwon, Deok Ho;Jeong, In-Hong;Seo, Bo Yoon;Kim, Hey-Kyung;Park, Chang-Gyu
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.347-354
    • /
    • 2019
  • Temperature-dependent traits of Laodelphax striatellus, rice stripe virus vector, were investigated at 10 constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, and 35.0 ± 1℃) under a fixed photoperiod (14/10-hr light/dark cycle). Unit functions for the oviposition model were estimated and implemented into a population dynamics model using DYMEX. The longevity of L. striatellus adults decreased with increasing temperature (56.0 days at 15.0℃ and 17.7 days at 35.0℃). The highest total fecundity (515.9 eggs/female) was observed at 22.5℃, while the lowest (18.6 eggs/female) was observed at 35.0℃. Adult developmental rates, temperature-dependent fecundity, age-specific mortality rates, and age-specific cumulative oviposition rates were estimated. All unit equations described adult performances of L. striatellus accurately (r2 =0.94~0.97). After inoculating adults, the constructed model was tested under pot and field conditions using the rice-plant hopper system. The model output and observed data were similar up to 30 days after inoculation; however, there were large discrepancies between observed and estimated population density after 30 days, especially for 1st and 2nd instar nymph densities. Model estimates were one or two nymphal stages faster than was observed. Further refinement of the model created in this study could provide realistic forecasting of this important rice pest.

Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine (화력발전소 증기터빈용 12Cr 강의 저주기 피로거동)

  • Kang, Myeong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.