• Title/Summary/Keyword: 수리화학적 특성

Search Result 189, Processing Time 0.034 seconds

중부 옥천대 구룡산층 내 채석장에 의한 수질오염의 수리화학적 특성

  • 이병선;한원식;문상기;신우식;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.225-230
    • /
    • 2002
  • 중부 옥천대 구룡산층 분포지역에서, 채석장 지류는 특징적으로 낮은 pH와 높은 EC를 나타내는 산성광산폐수의 형태를 보이고 있었으며, 황갈색 철 침전물을 나타내고 있었다. 이들은 탄산염이 풍부한 화전리층(상층) 지류와의 혼합으로 백색 알루미늄 침전물을 형성시켰으며, 따라서 산성수의 영향 범위가 크게 나타나지 않는 것으로 확인되었다. 포화지수와 열역학 데이터를 이용한 결과, 본 연구지역 채석장 지류에 황갈색 침전물을 생성시키는 용존철은 래피도크로사이트와 침철석의 복합적인 작용에 의해 농도가 조절되고 있음을 확인하였다.

  • PDF

Fluvial mixing characteristics in large scale confluence between Nam and Nakdong River (남강-낙동강 합류부 대하천 규모 수리학적 혼합특성 연구)

  • Choi, Suin;Kim, Dongsu;Son, Geunsoo;Kim, Youngdo;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.264-264
    • /
    • 2022
  • 하천의 합류부는 두 개 이상의 하천이 하나로 합쳐지는 구간으로 서로 다른 특성으로 인해 급격한 흐름의 변화와 수리학적 지형변화가 발생하는 구간이다. 하천의 합류부에서는 유체의 물리화학적인 특성과 흐름 구조의 변화가 발생할 수 있다. 흐름 구조의 변화로 인한 유사 이송으로 세굴과 같은 지형적인 변화가 발생할 수 있다. 합류부의 혼합을 이해하기 위해서는 본류와 지류의 다양한 유입조건에 따른 공간적인 패턴을 분석하는 것이 중요하다. 그러나, 대부분의 합류부 연구들은 실측에 기반한 공간적인 패턴 분석의 어려움으로 인해 실내실험 또는 수치모형에 의존하여 연구가 수행되어, 실측자료에 기반한 공간적인 수체혼합의 분석은 매우 제한적이었다. 따라서, 본 연구에서는 하천 합류부의 혼합 현상을 규명하는 인자로 흐름 방향 유속, 2차류와 수심 등 기본적인 수리학적 인자들 외에 연직, 수평 방향으로 측정한 수질 자료와 드론 영상을 활용하여 합류부의 혼합 특성을 해석하고자 하였다. 수질 자료 중 하천의 혼합을 가장 잘 확인할 수 있는 인자로써 전기전도도와 온도를 활용하였다. SonTek ADCP를 이동식으로 횡단하여 측정해 흐름 방향 유속과 2차류, 수심을 확인하였다. ADCP를 운용함과 동시에 YSI의 수질센서를 활용하여 연직, 수평 방향으로의 전기전도도와 온도의 분포를 확인하였다. 또한, 합류부의 2차원 공간적인 분포를 확인하기 위해 드론 영상을 촬영하였다. ADCP, YSI, 드론의 계측자료는 한국의 낙동강과 남강 합류부에서 측정되었고, 분석 결과 계측장비 간의 경향성이 일치하였다. 또한, 이전에 진행된 해외의 합류부 연구 결과와 유사한 결과가 관측되었으나, 일부 부분에서는 다른 결과를 보였다.

  • PDF

Hydrochemistry and Nitrogen and Sulfur Isotopes of Emergency-use Groundwater in Daeieon City (대전지역 민방위 비상급수용 지하수에 대한 수리화학과 질소 및 황 동위원소 연구)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.239-256
    • /
    • 2003
  • The purpose of this study is to investigate the hydrochemical characteristics of emergency-use groundwater in the Daejeon area, and to elucidate the contamination source of $NO_3-N$ and the origin of sulfate in the groundwater. The groundwater shows weak acidic pH, the electrical conductivity ranging from 142 to $903{\;}\mu\textrm{S}/cm$, and the hydrochemical types of $Ca-HCo_3$ and $Ca-Cl(SO_4,{\;}NO_3)$. The Box-Whisker analysis and the Krigging analysis of chemical data of groundwater were made to demonstrate the concentration distribution of hydrochemical composition, and to compare the trend of hydrochemical data. The groundwater in the area of Dong-gu, Jung-gu and Daeduk-gu, where are old town, shows higher electrical conductivity, nitrate content, sulfate and $EpCO_2$ levels than groundwater in new town area of Seo-gu and Yusung-gu. ${\delta}^{15}N$ of groundwater in the area of Seo-gu and Yusung-gu ranges from +7.4 to $+9.6{\textperthousand}$, indicating that major contamination source of $NO_3-N$ is the leakage from municipal sewage pipe lines. ${\delta}^{15}N$ of groundwater in the old town area of Tong-gu, Jung-gu and Daeduk-gu shows the range between +10.2 and $+23.5{\textperthousand}$, meaning that major contamination source is leakage of septic tank. ${\delta}^{34}S$ of groundwater shows the range of $+3~13.4{\;}{\textperthousand}$. Sulfur isotope indicates the possibility of a sulfate reduction and the input of anthrophogenic source.

Impacts of Combined Hydrogeological and Chemical Heterogeneities on the Transport of Leachate through Landfill Sites (수리지질학적, 화학적 특성의 복합 불균질성이 매립지반 내 침출수 이동에 미치는 영향)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2009
  • The transport of landfill leachate in the subsurface formations of unlined landfill sites is considered. The impacts of hydrogeological and chemical heterogeneities on the leachate transport are assessed by examining the results from a series of Monte-Carlo simulations. The landfill system simulated in this study is hypothetically represented with three levels of spatial variability for the hydrogeological and chemical parameter; (1) homogeneous hydraulic conductivity (K) and distribution coefficient ($K_d$), (2) K heterogeneity only, and (3) combined heterogeneities of K and $K_d$. To calculate the transport of leachate through negatively-correlated random hypothetical K-$K_d$ fields generated using geostatistical input parameters, a saturated flow model is linked with a contaminant transport model. Point statistic values such as mean, standard deviation, and coefficient of variation of the concentration were obtained from 100 Monte-Carlo trials. Results of point statistics show that the heterogeneities of K and $K_d$ in the landfill site prove to be an important parameter in controlling leachate concentrations. Consideration of combined K and $K_d$ heterogeneities results in enhancing the variability of contaminant transport. The variability in the leachate concentration for different realizations also increases as the distance between source and monitoring well increase.

Hydrochemistry and Formation Environment of $CO_2$-rich Springs from the Kangwon Province (강원지역에서 산출되는 탄산천의 수리화학 및 생성환경)

  • 정찬호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • The purposes of this study are to investigate the occurrence, the hydrochemical characteristics and the origin of the $CO_2$-rich springs from the Kangwon Province, and to reanalyze the previous studied results of other researchers. The $CO_2$-rich water samples were collected at 13 locations in the Kangwon Province. The $CO_2$-rich water shows a high $CO_2$ concentration ($P_{CO2}$ 0.787 to 4.78 atm), weak acidic pHs, electrical conductivity values ranging from 422 to 2,280 $\mu$S/cm, and high Fe and F contents. The chemical compositions of $CO_2$-rich water from this study area are classified into three types; $Ca-HCO_3$, Ca(Na)-$HCO_3$, $Na-HCO_3$ types. The chemical data of $CO_2$-rich waters and their host rocks indicate that $Na-HCO_3$ type water are mainly influenced by biotite, K-feldspar granite, and Ca(Na)-HC $O_3$, type water is chiefly influenced by gneiss and carbonate minerals in granite. F and Fe contents of $CO_2$-rich waters are abundant in $Na-HCO_3$, and $Ca-HCO_3$ types, respectively. The results of this study suggest that the chemical composition $CO_2$-rich water is mainly controlled by the mineralogical composition of aquifer host rocks. Oxygen and deuterium isotope data indicate that $CO_2$-rich water is meteoric origin. The $\delta^{13}$C values (-0.3$\textperthousand$ to -6.2$\textperthousand$ PDB) suggest that dissolved carbonates are mainly derived from a deep-seated $CO_2$ and partly from carbonate minerals.

Water Chemistry and Age Dating of Springwater in Cheju Island (제주도 용천수의 수질 화학적 특성과 연대 측정에 관한 연구)

  • Kim Jong-Hun;Ahn Jong-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.727-737
    • /
    • 1992
  • The water chemical characteristics and age dating of springwater in Cheju island had been investigated. C_1, C_4, C_7, C_9 springwaters were not affected by seawater intrusion by TDS and electrical conductivity, relationship of Cl and tritium, Cl and HCO_3 ratio, and total hardness and pseudo hardness. In this case only C_7 springwater was evaluated tasty and healthy mineral springwater by Hahimoto's Mineral Balance Index. On the basis of the mean tritium content of rainfalls and springwater, the average residence time of it, were calculated. Considering the hydrogeologic and hydrochemical condition, completely mixed model seems to be very fit. It was obtained the result that C_9 group springwater (C_{10}, C_{12}, C_{14}) was 1.2 months, C_7 springwater was 5.6 months, and deep groundwater C_{17} was 4 years.

  • PDF

Development of Site Characterization Technologies for Crystalline Rocks at Mizunami Underground Research Laboratory (MIU) - Surface-based Investigation Phase - (미즈나미 지하처분연구시설 결정질암에 대한 부지 특성규명 기술 개발 -지표기반 조사단계-)

  • Hama, Katsuhiro
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.115-131
    • /
    • 2013
  • The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This paper introduces geosynthesis procedures for the investigation and assessment of the hydrochemistry of groundwater in crystalline rock.

Hydrogeochemical Characterization of Groundwater in Jeju Island using Principal Component Analysis and Geostatistics (주성분분석과 지구통계법을 이용한 제주도 지하수의 수리지화학 특성 연구)

  • Ko Kyung-Seok;Kim Yongie;Koh Dong-Chan;Lee Kwang-Sik;Lee Seung-Gu;Kang Cheol-Hee;Seong Hyun-Jeong;Park Won-Bae
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.435-450
    • /
    • 2005
  • The purpose of the study is to analyze the hydrogeochemical characteristics by multivariate statistical method, to interpret the hydrogeochemical processes for the new variables calculated from principal components analysis (PCA), and to infer the groundwater flow and circulation mechanism by applying the geostatistical methods for each element and principal component. Chloride and nitrate are the most influencing components for groundwater quality, and the contents of $NO_3$ increased by the input of agricultural activities show the largest variation. The results of PCA, a multivariate statistical method, show that the first three principal components explain $73.9\%$ of the total variance. PC1 indicates the increase of dissolved ions, PC2 is related with the dissolution of carbonate minerals and nitrate contamination, and PC3 shows the effect of cation exchange process and silicate mineral dissolution. From the results of experimental semivariogram, the components of groundwater are divided into two groups: one group includes electrical conductivity (EC), Cl, Na, and $NO_3$, and the other includes $HCO_3,\;SiO_2,$ Ca, and Sr. The results for spatial distribution of groundwater components showed that EC, Cl, and Na increased with approaching the coastal line and nitrate has close relationship with the presence of agricultural land. These components are also correlated with the topographic features reflecting the groundwater recharge effect. The kriging analysis by using principal components shows that PC 1 has the different spatial distribution of Cl, Na, and EC, possibly due to the influence of pH, Ca, Sr, and $HCO_3$ for PC1. It was considered that the linear anomaly zone of PC2 in western area was caused by the dissolution of carbonate mineral. Consequently, the application of multivariate and geostatistical methods for groundwater in the study area is very useful for determining the quantitative analysis of water quality data and the characteristics of spatial distribution.

Mineralogical and Geochemical Characteristics of Earthenwares and Clay excavated from Hapsuri, Yeoncheon (연천 합수리 유적 출토 토기·토양의 광물학 및 지구화학적 특성)

  • Kim, Su Kyoung;Han, Lee Hyeon;Heo, Jun Su;Han, Min Su;Lee, Han Hyoung;Moon, Eun Jung;Seo, Min Seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.102-121
    • /
    • 2012
  • The purpose of this study is to verify homoteneity of soil and earthenwares and identify firing temperature of earthenwares excavated from Yeoncheon Hapsuri: two earthenwares of the New Stone Age(YCP-1, YCP-2); two of the Bronze Age(YCP-3, YCP-4); and four of the Three States Age(YCP-4~8). The comparative analysis of soil (YCRM) and the earthenwares displays that soil geochemical patterns were similar to YCP-1, YCP-3, YCP-5, YCP-6, YCP-7 and YCP-8. On the other hand, YCP-2 and YCP-4 did not show the similarity to the one of soil because they had been enriched with MgO by contained talc and chlorite. Based on the absorption rate, specific gravity, structural characteristics and XRD analysis, firing temperature has been estimated: for YCP-7 and YCP-8 was $870^{\circ}C$ or over; for YCP-2 and YCP-4 $800^{\circ}C$ or below; and for YCP-1, YCP-3, YCP-5 and YCP-6 between 800 and $870^{\circ}C$. Mineralogical analysis displays that the geochemical pattern of the soil is coincide with the one around Yeoncheon Hapsuri site, which also shows similarity to the one of earthenwares. Such result persuades that the excavated earthenwares were produced with the soils within the precinct of the archaeological sites.

Water Quality and Hydrochemistry of Natural Springs and Community Wells in Daejeon Area (대전지역 자연샘물 및 공동우물의 수질 및 수리화학적 특성)

  • 정찬호;박충화;이광식
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.395-406
    • /
    • 2002
  • The sixty natural springs and community wells used as a drinking water in the Daejeon area are mainly located at the parks and the natural green districts. The purpose of this study is to investigate the characteristics of water quality and the contamination of the springs and the wells, and to suggest the management strategy for the springs and wells. For this study, we undertook water quality data from Daejeon City. According to the statistic analysis of water quality data, unacceptable rate as a drinking water was about 28 percent in 1999 and 24.5 percent in 2000, respectively. Major unacceptable factor is coliform, and others are bacteria, yersinia, color, turbidity, Fe and F. The unacceptable rate shows a roughly positive relationship with precipitation, that is, it shows highest rate during a rainy season between June and September. The major contamination source is likely to be the excrement of wild animals around natural springs and wells. Most of springs are vulnerable to the contamination of coliform and bacteria because of short residence time and shallow circulation in subsurface environment. The water samples collected from 31 springs or wells show weak acidic pHs, the electrical conductivity ranging from 63 to 357 $\mu\textrm{S}$/cm, and the hydrochemical types of Na(Ca)-HC0$_3$ and Ca-HC0$_3$. The groundwater samples of low total dissolved solid(TDS) belong to Na(Ca)-HC0$_3$. type, and the groundwater of high total dissolved solid is shifted towards Ca-HC0$_3$ type in the chemical composition. These hydrochemical characteristics indicate that most natural springs is in the early stage of geochemical evolution. The natural springs should be closed during a rainy season, which shows a high contamination rate. We suggest that a protection barrier around the springs should be built to keep wild animals away from the springs.