• 제목/요약/키워드: 수리학적체류시간

Search Result 143, Processing Time 0.021 seconds

Reduction of Hexavalent Chromium by Leachate Microorganisms in a Continuous Suspended Growth Culture (연속배양 체제에서의 침출수 미생물에 의한 6가 크롬이온의 환원)

  • Kim, Hyoun-Young;Oh, Young-Sook;Kim, Yeong-Kwan;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.126-131
    • /
    • 1998
  • Reduction of hexavalent chromium to its trivalent form by leachate microorganisms was studied in batch and bench-scale continuous stirred tank reactor. The inoculum was a culture of microorganisms in leachate and capable of providing up to 90% chromate reduction during 72 h batch assay with $20mg\;Cr(VI)\;L^{-1}$ in minimal media containing different levels of leachate (10 to 60%) and glucose (50 to 200 mM). Addition of glucose increased the efficiency of chromate reduction, but adverse effect was observed with increase of leachate probably due to the competitive inhibition between chromate and sulfate ions. The continuous culture experiment was conducted for 124 days using synthetic feed containing different levels of chromate (5 to $65mg\;L^{-1}$) at room temperature. With a hydraulic retention time of 36 h, chromate reduction efficiency was mostly 100% when Cr(VI) concentrations in the reactor were in the range of 5 to $50mg\;L^{-1}$ Specific rate of Cr(VI) removal was calculated as $3.492mg\;g^{-1}\;protein\;h^{-1}$ during the period of 101~124 days from the start-up which showed 81.2% of average reduction efficiency. The results indicate the potential application of using leachate microorganisms for detoxification of hexavalent chromium in various chromium-contaminated wastewater from landfill or tannery sites.

  • PDF

Biodegradability of Artificial Bait for Blue Crab Pots and Its Effect on Seawater Quality (꽃게 통발용 인공미끼의 생분해도 및 해양수질 영향)

  • Jeong, Byung-Gon;Koo, Jae-Geun;Chang, Ho-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • The biodegradability in water of the artificial baits for blue crab pots which were made of intestines of mackerel, tuna and grinded krill were studied. The biodegradability of artificial bait was evaluated with the effective capacity of 10L water tank which was made of acryl pipe at the velocity of 1m/d and hydraulic retention time of 12 hours. For the 23 days operation time, all artificial baits were degraded fast at the early stage of operation time and stabilized within 5 days after start up. The rates of biodegradation were different depending on the raw materials of artificial baits. In terms of degradation rate of organic matter which can be expressed as COD, artificial bait made of tunas intestine showed the fastest degradation rate. On the other hand, in terms of degradation rate of nitrogenous matter which can be expressed as ammonia nitrogen, artificial bait made of mackerels intestine showed the fastest degradation rate. In order to evaluate the effect of artificial bait on marine ecosystem, seawater qualities including SS, COD, DO, nitrogen, phosphorus were determined depending on depth and location during 2 days test operation period. It is apparent that the effect of artificial bait on seawater quality was negligible when comparing seawater quality of test operation area with control area.

  • PDF

The Fermentative Hydrogen Production in Trickling Bed Biofilter Filled with Hydrophilic-and Hydrophobic-Media (소수성 및 친수성 담체를 이용한 Trickling Bed Biofilter의 생물학적 수소생산)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Gu, Man-Bock;Chae, Hee-Jeong;Sang, Byoung-In
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and conducted for hydrogen production under the anaerobic fermentation of sucrose. Each bioreactor consisted of the column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed by the different hydraulic retention time(HRT), and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% of biogas throughout the operation. Hydrogen production rate was increased till $10.5\;L{\cdot}h^{-1}{\cdot}L^{-1}$ of bioreactor when influent sucrose concentrations and recycle rates were varied. At the same time, the hydrogen production rate with hydrophobic media application was higher than its hydrophilic media application. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate, butyrate and lactate. In order to run in the long term operation of both reactor filled with hydrophilic and hydrophobic media, biofilm accumulation on hydrophilic media and biogas produced should be controlled through some process such as periodical backwashing or gas-purging. Four sample were collected from each reactor on the opposite hydrogen production rate, and their bacterial communities were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR products generated using bacterial 16s rRNA gene primers (8f and 926r). It was expressed a marked difference in bacterial communities of both reactors. The trickling bed bioreactor with hydrophobic media demonstrates the feasibility of the process to produce hydrogen gas. A likely application of this reactor technology can be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

Development of Influent Controlled Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater (하수 고도처리를 위한 유로변경형 MBR공정의 개발)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.485-491
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as two intermittently anaerobic tanks, the oxic tank and the sludge solubilizaion tank with an internal recycle. The hydraulic retention time (HRT) and flux were 6.5 hours and $20.4L/m^2{\cdot}hr$ (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.0%, 99.3%, 99.9%, 69.9%, and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.34 kgVSS/kgBOD d, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, 16.0 mgP/gVSS d and 2.1 mgP/gVSS d, respectively. The contents of nitrogen and phosphorus of biomass were 8.9% and 3.5% on an average.

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang (팔당호 동물플랑크톤 군집의 시공간적 분포)

  • Sim, Youn-Bo;Jeong, Hyun-Gi;Im, Jong-Kwon;Youn, Seok-Jea;Byun, Myeong-Seop;Yoo, Soon-Ju
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • The zooplankton community and environmental factor were investigated on a weekly basis from March to November 2015 in Lake Paldang, Korea. The seasonal succession of zooplankton community structure was influenced by hydraulic and hydrological factors such as inflow, outflow and rainfall. However, the hydraulic retention time in 2015 (16.3 day) was affected by the periods of water shortage that had continued since 2014 and increased substantially compared to 2013 (7.3 day). Therefore, the inflow and outflow discharge were decreased, and the water quality (COD, BOD, TOC, TP, Chl-a) of Lake Paldang (St.1) was the same characteristics as the river type Bukhan river (St.3), compared with the lake type Namhan river (St.2) and Gyeongan stream (St.4). Zooplankton community dominated by rotifers (Keratella cochlearis, Synchaeta oblonga) in spring (March to May). However, Copepod (Nauplius) and Cladoceran (Bosmina longirostris) dominated in St.4. In summer (June to August), there was a few strong rainfall event and the highest number of individuals dominated by Keratella cochlearis (Rotifera) and Difflugia corona (Protozoa) were shown during the study period. In autumn (October to November), the water temperature was decreased with decrease in the total number of individuals showing Nauplius (Copepoda) as the dominant species. As a result of the statistical analysis about zooplankton variation in environmental factors, the continuous periods of water shortage increased the hydraulic retention time and showed different characteristic for each site. St.1, St.3 and St.2, St.4 are shown in the same group (p<0.05), showing the each characteristics of river type and lake type. Therefore, the water quality of catchment area and distribution of zooplankton community would be attributed to hydraulic and hydrological factors.

Performances of Anaerobic Sequencing Batch Reactor for Digestion of Municipal Sludge at the Conditions of Critical Solid-liquid Separation (혐기성 연속 회분식 공정에 의한 도시하수슬러지 소화시 고액분리 특성에 따른 처리효율평가)

  • Hur, Joon-Moo;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.77-85
    • /
    • 2002
  • The objective of this study was to evaluate the performances of the ASBR under critical conditions of solid-liquid separation, caused by extremely high solids concentration, for wider application of the ASBR to various wastes. The ASBRs and completely-mixed daily-fed control runs were operated using a municipal mixed sludge at 35$^{\circ}C$ and 55$^{\circ}C$. Conversion of completely-mixed daily-fed reactor to sequencing batch mode and changes in HRT of all ASBRs were easily achieved without adverse effect, regardless of digestion temperature. Solids accumulation was remarkable in the ASBRs, and directly affected by settleable solids concentration of the feed sludge. Noticeable difference in solids-liquid separation was that flotation thickening occurred in the mesophilic ASBRs, while gravity thickening was a predominant solid-liquid separation process in the thermophilic ASBRS. Solids profiles at the end of thickening step dramatically changed at solid-liquid interface, and slight difference in solids concentrations was observed within thickened sludge bed. Organics removals based on subnatant or supernatant after thickening always exceeded 80% in all reactors. Thickened sludge volume and gas production of the ASBRs affected mutually. Gas production increased as thickened sludge accumulated, and continuous gas evolution during thickening could cause thickened sludge to expand or resuspend. Thickened sludge volume exceeding a predetermined withdrawal level resulted in loss of organic solids as well as biomass during withdrawal step, leading to decrease in gas production ind SRT. Such an adverse mutual effect was significant in gravity thickening, while it was not sensitive in flotation thickening. Changes in organic loading had no significant effect on organic removals and gas production after build-up of solids in the ASBRs.

Fermentative Hydrogen Production under Various $SO_4^{2-}$ Concentration using Anaerobic Mixed Microflora (혐기 혼합균주에서 황산염 농도변화에 따른 수소 발효 특성)

  • Hwang, Jae-Hoon;Choi, Jeong-A;Lee, Jong-Hak;Jeong, Tae-Young;Cha, Gi-Cheol;Song, Ho-Cheol;Yong, Bo-Young;Kim, Dong-Jin;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.434-441
    • /
    • 2009
  • The effect of varying sulfate concentration on continuous fermentative hydrogen production was studied using enriched mixed microflora in continuously fed reactor. Glucose was used as a model substrate for carbohydrates, and hydraulic retention time (HRT) was maintained at 1, 0.5, 0.25 day, respectively. Sulfate concentration was 0${\sim}$20,000 mg/L and the operating pH was maintained at 5.5. The experimental results indicate that hydrogen production is not affected by high sulfate concentration and shorter HRT of 0.25 day enhance hydrogen production. At HRT 1, 0.5, 0.25 day, the hydrogen production rate and hydrogen yield were 2.6, 4.6, 9.4 L/day, and 2.0, 1.8, 1.6 mol $H_2$/mol glucose, respectively. Residual sulfate content was 96${\sim}$98, 95${\sim}$97, and 94${\sim}$97% at HRT 1, 0.5, 0.25 day which show that no sulfate reduction occurred in the reactor during the experiments. Results of Fluorescence In Situ Hybridization (FISH) may indicate the presence of HPB (hydrogen producing bacteria) under all experimental conditions. However, SRB (sulfate reducing bacteria) were not found.

Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste (유기성고형폐기물의 연속 중온 건식혐기성소화)

  • Oh, Sae-Eun;Lee, Mo-Kwon;Kim, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.341-345
    • /
    • 2009
  • Continuous dry anaerobic digestion of organic solid wastes (30% TS, Total Solids) comprised of food waste and paper was performed under mesophilic condition. During the operation, hydraulic retention time (HRT) was decreased as follows: 150 d, 100 d, 60 d, and 40 d, which corresponded to the solid loading rate of 2.0, 3.0, 5.0, and 7.5 kg TS/$m^3$/d, respectively. Volumetric biogas production rate ($m^3$/$m^3$/d) increased as HRT decreased, and the highest biogas production rate of 3.49${\pm}$0.31 $m^3$/$m^3$/d was achieved at 40 d of HRT. At this HRT, high volatile solids (VS) reduction of 76% was maintained, and methane production yield of 0.25 $m^3$/kg $TS_{added}$ was achieved, indicating 67.4% conversion of organic solid waste to bioenergy. The highest biogas production yield of 0.52 $m^3$/kg $TS_{added}$ was achieved at 100 d of HRT, but it did not change much with respect to HRT. For the ease feed pumping, some amount of digester sludge was recycled and mixed with fresh feed to decrease the solid content. Recirculation volume of 5Q was found to be the optimal in this experimental condition. Specific methanogenic activity (SMA) of microorganisms at mesophilic-dry condition was 2.66, 1.94, and 1.20 mL $CH_4$/g VS/d using acetate, butyrate, and propionate as a substrate, respectively.

Electric Power Generation and Treatment Efficiency of Organic Matter on Hydraulic Retention Time in Microbial Fuel Cell Reactor (미생물 연료전지 반응조의 수리학적 체류시간에 따른 유기물질 처리효율과 전력생산)

  • Choi, Chansoo;Lim, Bongsu;Xu, Lei;Song, Gyuho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • This study has been attempted to generate electricity, while simultaneously treating artificial organic wastewater using both batch and continuous microbial fuel cells (MFCs). In the batch MFC, current-voltage curve showed an onset potential of -0.69 V vs. Ag/AgCl. The potential range between this potential and 0 potential displayed an available voltage for an automatic production of electric energy and glucose, which was oxidized and treated at the same time. The 486 mg/L glucose solution showed the maximum power of $30mW/m^2$ and the maximum current density of $75mA/m^2$ shown in the power curve. As a result, discharging of the cell containing COD 423 mg/L at the constant current density of $60mA/m^2$ showed a continuous electricity generation for about 22 hours that dropped rapidly due to dissipating of organic material. Total electric energy production was 18.0 Wh. While discharging, the pH change was low and dropped from pH 6.53 to 6.20 then increased to 6.47, then stabilized at this charge. The COD treatment efficiency was found to be 72%. In the continuous MFC, COD removal tends to increase as the hydraulic retention time is increased. At one day of hydraulic retention time as the maximum value reaches the COD removal efficiency, power production rate and power production rate per COD removal that were obtained were 68.8%, $14mW/m^2$, and $20.8mW/m^2/g$ CODrm, respectively. In the continuous MFC, the power production rate per COD removal increases as the hydraulic retention time is increased and decreases as the organic loading rate is increased. At the values lower than an organic loading rate of $1kgCOD/m^3/d$, the values higher than about $18.1mW/m^2/g$ CODrm could be obtained.